Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dot, dot, dot . . . How quantum dots line up

10.07.2003


A method that can be used to predict the growth of earthquake faults also aids prediction of the tiniest of phenomena--how arrays of "artificial atoms," or quantum dots, assemble and stack themselves on semiconductor materials, National Institute of Standards and Technology (NIST) researchers report in the July 15 issue of Physical Review B.



The insight could aid development of more reliable methods for fabricating lasers, sensors and other devices that exploit quantum dots’ special electronic properties -- the result of confining electrons in the space of a few nanometers. The minuscule structures already are the basis for some lasers. Yet, difficulties in making quantum dots of uniform size and precisely positioning them on a substrate remain formidable. These obstacles stand in the way of an array of faster, more powerful electronic and photonic devices that require only small inputs of energy to spring into action.

NIST’s Bo Yang and Vinod Tewary borrowed a mathematical concept that explains how cracks grow in a solid, such as the Earth’s crust or an airplane wing. The concept, called the elastic energy release rate, accounts for how energy is apportioned as a crack advances. The scientists found that the rate also accounts for how self-assembling quantum dots, which strain the system’s lattice-like atomic geometry, will position and align themselves among their neighbors--those next door and those living below. For cube-shaped quantum dots, at least, the equation predicts the most "energetically favorable" location for a quantum dot. The NIST pair says their theory can be used, for example, to predict the optimal depth for embedding quantum dots that will be overlain by another array of dots.


Mark Bello | EurekAlert!

More articles from Physics and Astronomy:

nachricht A quantum walk of photons
24.05.2017 | Julius-Maximilians-Universität Würzburg

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>