Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-Cold Substance Shows Stripes -- Behavior Explained

11.06.2003


Physicists at Ohio State University may have explained some strange behavior of the ultra-cold material known as Bose-Einstein condensate (BEC).


Tin-Lun Ho



The new analysis shows that scientists are closer than ever to harnessing BEC to perform useful functions such as quantum computing, said Tin-Lun Ho, professor of physics at Ohio State and the project’s principal investigator.

Ho has pioneered theoretical studies of BEC, an entirely new form of matter that defies description as a solid, liquid, or gas. The condensate forms when atoms of a single chemical element such as rubidium are cooled to temperatures so low that they condense together. One glob of the material measures less than half the width of a human hair, and functions as a single atom, or “superatom,” that operates under the laws of quantum physics.


Ho’s work may help scientists understand how BEC could be used in quantum computing, making powerful computer chips so small that they could not be seen by the naked eye.

Scientists can spin a glob of BEC by suspending it in a magnetic field and nudging it with pulses of laser light, causing an array of whirlpool-like vortices to form in the material. And when they squeeze the material in a magnetic field, the vortices appear to melt together and form stripes.

But the melting is merely an illusion, according to Ho and postdoctoral researcher Erich Mueller.

In a study to be published on the Web in the journal Physical Review A, they report that the BEC only appears to form stripes because the lattice pattern changes -- the vortices remain separate the entire time.

"The equations were so simple we developed them with pencil and paper -- no computer was needed," Ho said. “That means we are truly beginning to understand the Bose-Einstein condensate, and that’s the first step to learning whether we can control its behavior."

The finding solves a mystery uncovered by one of the first creators of BEC, Eric Cornell of the University of Colorado at Boulder. In 1999, Cornell’s team and two other experimental groups were able to spin BEC so fast that they caused a lattice of evenly spaced vortices to form within the material.

In 2002, Ho suggested that scientists might be able to cause BEC to achieve a much-desired quantum state, called the Quantum Hall state, if they increased the density of the vortices by spinning the BEC even faster. Inspired by this suggestion, Cornell decided to increase the density by squeezing the BEC. He saw the material change periodically between an array of vortices and a set of stripes, as if the vortex lattice was melting and then returning to its coherent form again and again.

"We had to wonder, if the vortices just melt together, how could they return to an organized pattern? We realized something strange was happening," Ho said.

When he and Mueller derived analytical equations to model the behavior of the condensate when it’s squeezed, to their surprise, they found that the results perfectly matched what Cornell saw.

But the vortices did not actually melt together, they just re-arranged themselves from a perfect lattice into a different and entirely unique flow pattern, Ho said. The behavior suggests that the density of the BEC is sensitive to even very small changes in the vortex array.

The significance of the new calculations, according to Ho, is that they show experimental scientists such as Cornell are on the right track in achieving the Quantum Hall state, even though a higher density of vortices is still needed to reach this goal.

Ho feels his latest work bodes well for BEC’s future possibilities.

"Any control you have over the material will help with processing quantum information," he said. "I’m optimistic that a lot of progress will happen in this area soon, and the dream of quantum computation may one day be realized."

Other applications may be possible along the way. For instance, this revolutionary control of matter in the laboratory could lead to more precise time measurement. Satellite navigation, global positioning systems, and the alignment of astronomical telescopes all depend on precise time measurements.

"Quantum computing is a distant goal, but in the process of reaching that goal, there are all kinds of benefits," Ho said.

This work was supported by NASA and the National Science Foundation.


Contact: Tin-Lun Ho, (614) 292-2046; Ho.6@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/bestripe.htm

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>