Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-Cold Substance Shows Stripes -- Behavior Explained

11.06.2003


Physicists at Ohio State University may have explained some strange behavior of the ultra-cold material known as Bose-Einstein condensate (BEC).


Tin-Lun Ho



The new analysis shows that scientists are closer than ever to harnessing BEC to perform useful functions such as quantum computing, said Tin-Lun Ho, professor of physics at Ohio State and the project’s principal investigator.

Ho has pioneered theoretical studies of BEC, an entirely new form of matter that defies description as a solid, liquid, or gas. The condensate forms when atoms of a single chemical element such as rubidium are cooled to temperatures so low that they condense together. One glob of the material measures less than half the width of a human hair, and functions as a single atom, or “superatom,” that operates under the laws of quantum physics.


Ho’s work may help scientists understand how BEC could be used in quantum computing, making powerful computer chips so small that they could not be seen by the naked eye.

Scientists can spin a glob of BEC by suspending it in a magnetic field and nudging it with pulses of laser light, causing an array of whirlpool-like vortices to form in the material. And when they squeeze the material in a magnetic field, the vortices appear to melt together and form stripes.

But the melting is merely an illusion, according to Ho and postdoctoral researcher Erich Mueller.

In a study to be published on the Web in the journal Physical Review A, they report that the BEC only appears to form stripes because the lattice pattern changes -- the vortices remain separate the entire time.

"The equations were so simple we developed them with pencil and paper -- no computer was needed," Ho said. “That means we are truly beginning to understand the Bose-Einstein condensate, and that’s the first step to learning whether we can control its behavior."

The finding solves a mystery uncovered by one of the first creators of BEC, Eric Cornell of the University of Colorado at Boulder. In 1999, Cornell’s team and two other experimental groups were able to spin BEC so fast that they caused a lattice of evenly spaced vortices to form within the material.

In 2002, Ho suggested that scientists might be able to cause BEC to achieve a much-desired quantum state, called the Quantum Hall state, if they increased the density of the vortices by spinning the BEC even faster. Inspired by this suggestion, Cornell decided to increase the density by squeezing the BEC. He saw the material change periodically between an array of vortices and a set of stripes, as if the vortex lattice was melting and then returning to its coherent form again and again.

"We had to wonder, if the vortices just melt together, how could they return to an organized pattern? We realized something strange was happening," Ho said.

When he and Mueller derived analytical equations to model the behavior of the condensate when it’s squeezed, to their surprise, they found that the results perfectly matched what Cornell saw.

But the vortices did not actually melt together, they just re-arranged themselves from a perfect lattice into a different and entirely unique flow pattern, Ho said. The behavior suggests that the density of the BEC is sensitive to even very small changes in the vortex array.

The significance of the new calculations, according to Ho, is that they show experimental scientists such as Cornell are on the right track in achieving the Quantum Hall state, even though a higher density of vortices is still needed to reach this goal.

Ho feels his latest work bodes well for BEC’s future possibilities.

"Any control you have over the material will help with processing quantum information," he said. "I’m optimistic that a lot of progress will happen in this area soon, and the dream of quantum computation may one day be realized."

Other applications may be possible along the way. For instance, this revolutionary control of matter in the laboratory could lead to more precise time measurement. Satellite navigation, global positioning systems, and the alignment of astronomical telescopes all depend on precise time measurements.

"Quantum computing is a distant goal, but in the process of reaching that goal, there are all kinds of benefits," Ho said.

This work was supported by NASA and the National Science Foundation.


Contact: Tin-Lun Ho, (614) 292-2046; Ho.6@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/bestripe.htm

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>