Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brighter Neptune suggests a planetary change of seasons

16.05.2003


A progressive increase in the brightness of the planet Neptune suggests that, like Earth, the distant planet has seasons.


A time series of images of the planet Neptune taken by the Hubble Space Telescope illustrate increasing cloudiness that is a hallmark of seasonal change. The growing bands of clouds in the southern hemisphere of the planet suggest seasonal change. Because the planet takes about 165 years to orbit the sun, the seasons on Neptune last more than 40 years.
Image credit: L. Sromovsky, P.Fry (University of Wisconsin), and NASA



Observations of Neptune made during a six-year period with NASA’s Hubble Space Telescope by a group of scientists from the University of Wisconsin-Madison and NASA’s Jet Propulsion Laboratory (JPL) show that the planet is exhibiting a significant increase in brightness. The changes, observed mostly in the planet’s southern hemisphere, show a distinct increase in the amount and brightness of the banded cloud features that are a distinctive feature of the planet.

"Neptune’s cloud bands have been getting wider and brighter," says Lawrence A. Sromovsky, a senior scientist at UW-Madison’s Space Science and Engineering Center and a leading authority on Neptune’s atmosphere. "This change seems to be a response to seasonal variations in sunlight, like the seasonal changes we see on Earth."


The findings are reported in the current issue (May 2003) of Icarus, a leading planetary science journal.

Neptune, the eighth planet from the sun, is known for its weird and violent weather. It has massive storm systems and ferocious winds that sometimes gust to 900 miles per hour, but the new Hubble observations are the first to suggest that the planet undergoes a change of seasons.

Using Hubble, the Wisconsin team made three sets of observations of Neptune. In 1996, 1998 and 2002, they obtained observations of a full rotation of the planet. The images showed progressively brighter bands of clouds encircling the planet’s southern hemisphere. The findings are consistent with observations made by G.W. Lockwood at the Lowell Observatory, which show that Neptune has been gradually getting brighter since 1980.

"In 2002 images, Neptune is clearly brighter than it was in 1996 and 1998," Sromovsky says, "and is dramatically brighter at near infrared wavelengths. The greatly increased cloud activity in 2002 continues a trend first noticed in 1998."

Like the Earth, Neptune would have four seasons: "Each hemisphere would have a warm summer and a cold winter, with spring and fall being transitional seasons, which may or may not have specific dynamical features," the Wisconsin scientist explains.

Unlike the Earth, however, the seasons of Neptune last for decades, not months. A single season on the planet, which takes almost 165 years to orbit the sun, can last more than 40 years. If what scientists are observing is truly seasonal change, the planet will continue to brighten for another 20 years.

Also like Earth, Neptune spins on an axis that is tilted at an angle toward the sun. The tilt of the Earth, at a 23.5-degree inclination, is the phenomenon responsible for the change of seasons. As the Earth spins on its axis and orbits the sun during the course of a year, the planet is exposed to patterns of solar radiation that mark the seasons. Similarly, Neptune is inclined at a 29-degree angle and the northern and southern hemispheres alternate in their positions relative to the sun.

What is remarkable, according to Sromovsky, is that Neptune exhibits any evidence of seasonal change at all, given that the sun, as viewed from the planet, is 900 times dimmer than the sun as seen from the Earth. The amount of solar energy a hemisphere receives at a given time is what determines the season.

"When the sun deposits heat energy into an atmosphere, it forces a response. In the hemisphere getting the most sunlight, we would expect heating, which in turn could force rising motions, condensation and increased cloud cover," Sromovsky notes.

Bolstering the idea that the Hubble images are revealing a real increase in Neptune’s cloud cover consistent with seasonal change is the apparent absence of change in the planet’s low latitudes near its equator.

"Neptune’s nearly constant brightness at low latitudes gives us confidence that what we are seeing is indeed seasonal change, as those changes would be minimal near the equator and most evident at high latitudes where the seasons tend to be more pronounced."

Despite the new insights into Neptune, the planet remains an enigma, says Sromovsky. While Neptune has an internal heat source that may also contribute to the planet’s apparent seasonal variations and blustery weather, when that is combined with the amount of solar radiation the planet receives, the total is so small that it is hard to understand the dynamic nature of Neptune’s atmosphere.

There seems, Sromovsky says, to be a "trivial amount of energy available to run the machine that is Neptune’s atmosphere. It must be a well-lubricated machine that can create a lot of weather with very little friction."

In addition to Sromovsky, authors of the Icarus paper include Patrick M. Fry and Sanjay S. Limaye, both of UW-Madison’s Space Science and Engineering Center, and Kevin H. Baines of NASA’s Jet Propulsion Laboratory in Pasadena, Calif.


Terry Devitt, 608-262-8282, trdevitt@wisc.edu

CONTACT: Lawrence Sromovsky, 608-263-6785, lsromovsky@ssec.wisc.edu.

Lawrence Sromovsky | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>