Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brighter Neptune suggests a planetary change of seasons

16.05.2003


A progressive increase in the brightness of the planet Neptune suggests that, like Earth, the distant planet has seasons.


A time series of images of the planet Neptune taken by the Hubble Space Telescope illustrate increasing cloudiness that is a hallmark of seasonal change. The growing bands of clouds in the southern hemisphere of the planet suggest seasonal change. Because the planet takes about 165 years to orbit the sun, the seasons on Neptune last more than 40 years.
Image credit: L. Sromovsky, P.Fry (University of Wisconsin), and NASA



Observations of Neptune made during a six-year period with NASA’s Hubble Space Telescope by a group of scientists from the University of Wisconsin-Madison and NASA’s Jet Propulsion Laboratory (JPL) show that the planet is exhibiting a significant increase in brightness. The changes, observed mostly in the planet’s southern hemisphere, show a distinct increase in the amount and brightness of the banded cloud features that are a distinctive feature of the planet.

"Neptune’s cloud bands have been getting wider and brighter," says Lawrence A. Sromovsky, a senior scientist at UW-Madison’s Space Science and Engineering Center and a leading authority on Neptune’s atmosphere. "This change seems to be a response to seasonal variations in sunlight, like the seasonal changes we see on Earth."


The findings are reported in the current issue (May 2003) of Icarus, a leading planetary science journal.

Neptune, the eighth planet from the sun, is known for its weird and violent weather. It has massive storm systems and ferocious winds that sometimes gust to 900 miles per hour, but the new Hubble observations are the first to suggest that the planet undergoes a change of seasons.

Using Hubble, the Wisconsin team made three sets of observations of Neptune. In 1996, 1998 and 2002, they obtained observations of a full rotation of the planet. The images showed progressively brighter bands of clouds encircling the planet’s southern hemisphere. The findings are consistent with observations made by G.W. Lockwood at the Lowell Observatory, which show that Neptune has been gradually getting brighter since 1980.

"In 2002 images, Neptune is clearly brighter than it was in 1996 and 1998," Sromovsky says, "and is dramatically brighter at near infrared wavelengths. The greatly increased cloud activity in 2002 continues a trend first noticed in 1998."

Like the Earth, Neptune would have four seasons: "Each hemisphere would have a warm summer and a cold winter, with spring and fall being transitional seasons, which may or may not have specific dynamical features," the Wisconsin scientist explains.

Unlike the Earth, however, the seasons of Neptune last for decades, not months. A single season on the planet, which takes almost 165 years to orbit the sun, can last more than 40 years. If what scientists are observing is truly seasonal change, the planet will continue to brighten for another 20 years.

Also like Earth, Neptune spins on an axis that is tilted at an angle toward the sun. The tilt of the Earth, at a 23.5-degree inclination, is the phenomenon responsible for the change of seasons. As the Earth spins on its axis and orbits the sun during the course of a year, the planet is exposed to patterns of solar radiation that mark the seasons. Similarly, Neptune is inclined at a 29-degree angle and the northern and southern hemispheres alternate in their positions relative to the sun.

What is remarkable, according to Sromovsky, is that Neptune exhibits any evidence of seasonal change at all, given that the sun, as viewed from the planet, is 900 times dimmer than the sun as seen from the Earth. The amount of solar energy a hemisphere receives at a given time is what determines the season.

"When the sun deposits heat energy into an atmosphere, it forces a response. In the hemisphere getting the most sunlight, we would expect heating, which in turn could force rising motions, condensation and increased cloud cover," Sromovsky notes.

Bolstering the idea that the Hubble images are revealing a real increase in Neptune’s cloud cover consistent with seasonal change is the apparent absence of change in the planet’s low latitudes near its equator.

"Neptune’s nearly constant brightness at low latitudes gives us confidence that what we are seeing is indeed seasonal change, as those changes would be minimal near the equator and most evident at high latitudes where the seasons tend to be more pronounced."

Despite the new insights into Neptune, the planet remains an enigma, says Sromovsky. While Neptune has an internal heat source that may also contribute to the planet’s apparent seasonal variations and blustery weather, when that is combined with the amount of solar radiation the planet receives, the total is so small that it is hard to understand the dynamic nature of Neptune’s atmosphere.

There seems, Sromovsky says, to be a "trivial amount of energy available to run the machine that is Neptune’s atmosphere. It must be a well-lubricated machine that can create a lot of weather with very little friction."

In addition to Sromovsky, authors of the Icarus paper include Patrick M. Fry and Sanjay S. Limaye, both of UW-Madison’s Space Science and Engineering Center, and Kevin H. Baines of NASA’s Jet Propulsion Laboratory in Pasadena, Calif.


Terry Devitt, 608-262-8282, trdevitt@wisc.edu

CONTACT: Lawrence Sromovsky, 608-263-6785, lsromovsky@ssec.wisc.edu.

Lawrence Sromovsky | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>