Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origin Of New Moons Explained

15.05.2003


The ability to understand how small bodies such as moons switch from orbiting the Sun to orbiting a planet has long remained one of the outstanding problems of planetary science. A paper published in Nature on 15 May shows how this problem has been resolved using chaos theory, enabling scientists to predict where astronomers might search for new moons orbiting the giant planets.



In the last couple of years many small moons have been found orbiting the giant planets in our Solar System. For example, Jupiter now has 60 moons in total and Saturn more than 30. Astronomers believe that understanding the nature of these moons can reveal important clues about the early history of the planets. Such insights into understanding our own Solar System will help us understand how other solar systems came into being, and whether they might be favourable to life.

The moons can be divided into two groups - regular and irregular. Regular moons have a roughly circular orbit around their planet and are believed to have been formed there during the early history of the Solar System. Irregular moons have an orbit that is highly elliptical, orbiting the planet at a distance of many millions of miles. These are believed to have originally encircled the Sun and to have been subsequently ’’captured’’ by the planet they now orbit.


The discovery of these new moons has shaken our cherished ways of understanding our Solar System. In particular, the problem of satellite capture - the mechanism by which bodies switch from an orbit around the Sun to an orbit around the planet - remained outstanding. Secondary to this was the problem of why some moons have prograde orbits - revolving in the same direction as the planet - while the vast majority have retrograde orbits.

Stephen Wiggins and Andrew Burbanks, mathematicians at Bristol University, along with David Farrelly and Sergey Astakhov, theoretical chemists at Utah State University, were using chaos theory to understand the mechanics of chemical reactions. They realised that the approach they had been using in chemistry might also be applied to the problem of ’’capture’’. Furthermore, they thought that if they could solve the capture problem it might give them some insight into their chemistry problems.

Stephen Wiggins said: "When we started to look at the capture of irregular moons what we found was that no-one else was trying to understand this problem in three dimensions using chaos theory. Most work was focused on understanding the behaviour of these moons after they had been captured. So in an attempt to understand how a body orbiting the Sun could be brought in to an orbit around one of the giant planets we simulated the ’’switching’’ mechanism. We found that it was chaos that allowed the capture process to take place."

Using the mathematical equations they developed to explain the capture mechanism, the Bristol and Utah research groups present an explanation which not only agrees well with the observed locations of the known irregular moons, but also predicts new regions where moons could be located. The ability to predict where new moons might be found should make life much easier for astronomers who face the daunting task of searching huge regions of space for them.

The joint UK/US research team also showed that the moons initially captured into prograde orbits of moons are not only chaotic, but that they have a tendency to approach the region very close to the planet. This means that they have a greater chance of being eliminated by collisions with the inner giant moons or the planet, thereby explaining the far larger number of retrograde moons, especially around Jupiter.

This work shows that chaos-assisted capture may be a necessary, and quite general, predecessor of certain types of orderly and stable satellite orbits. END

Cherry Lewis | alfa

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>