Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origin Of New Moons Explained

15.05.2003


The ability to understand how small bodies such as moons switch from orbiting the Sun to orbiting a planet has long remained one of the outstanding problems of planetary science. A paper published in Nature on 15 May shows how this problem has been resolved using chaos theory, enabling scientists to predict where astronomers might search for new moons orbiting the giant planets.



In the last couple of years many small moons have been found orbiting the giant planets in our Solar System. For example, Jupiter now has 60 moons in total and Saturn more than 30. Astronomers believe that understanding the nature of these moons can reveal important clues about the early history of the planets. Such insights into understanding our own Solar System will help us understand how other solar systems came into being, and whether they might be favourable to life.

The moons can be divided into two groups - regular and irregular. Regular moons have a roughly circular orbit around their planet and are believed to have been formed there during the early history of the Solar System. Irregular moons have an orbit that is highly elliptical, orbiting the planet at a distance of many millions of miles. These are believed to have originally encircled the Sun and to have been subsequently ’’captured’’ by the planet they now orbit.


The discovery of these new moons has shaken our cherished ways of understanding our Solar System. In particular, the problem of satellite capture - the mechanism by which bodies switch from an orbit around the Sun to an orbit around the planet - remained outstanding. Secondary to this was the problem of why some moons have prograde orbits - revolving in the same direction as the planet - while the vast majority have retrograde orbits.

Stephen Wiggins and Andrew Burbanks, mathematicians at Bristol University, along with David Farrelly and Sergey Astakhov, theoretical chemists at Utah State University, were using chaos theory to understand the mechanics of chemical reactions. They realised that the approach they had been using in chemistry might also be applied to the problem of ’’capture’’. Furthermore, they thought that if they could solve the capture problem it might give them some insight into their chemistry problems.

Stephen Wiggins said: "When we started to look at the capture of irregular moons what we found was that no-one else was trying to understand this problem in three dimensions using chaos theory. Most work was focused on understanding the behaviour of these moons after they had been captured. So in an attempt to understand how a body orbiting the Sun could be brought in to an orbit around one of the giant planets we simulated the ’’switching’’ mechanism. We found that it was chaos that allowed the capture process to take place."

Using the mathematical equations they developed to explain the capture mechanism, the Bristol and Utah research groups present an explanation which not only agrees well with the observed locations of the known irregular moons, but also predicts new regions where moons could be located. The ability to predict where new moons might be found should make life much easier for astronomers who face the daunting task of searching huge regions of space for them.

The joint UK/US research team also showed that the moons initially captured into prograde orbits of moons are not only chaotic, but that they have a tendency to approach the region very close to the planet. This means that they have a greater chance of being eliminated by collisions with the inner giant moons or the planet, thereby explaining the far larger number of retrograde moons, especially around Jupiter.

This work shows that chaos-assisted capture may be a necessary, and quite general, predecessor of certain types of orderly and stable satellite orbits. END

Cherry Lewis | alfa

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>