Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment may help size up neutrinos

19.03.2003


Our planet is bombarded every second with a large number of chargeless, seemingly massless, particles that originate in nuclear fusion reactions that power the sun. They’re called neutrinos.



According to The Standard Solar Model – the most substantiated model of the sun – the sun should emit around three times more neutrinos than are actually measured on Earth. They are a source of great interest for scientists who seek to better understand elementary particles and the physics of the sun. Indeed, one of the recipients of this year’s Nobel Prize in Physics was Raymond Davis, who first drew attention to the neutrino shortfall.

Three major research efforts (carried out by the underground large detector complexes at Sudbury Neutrino Observatory (SNO) in Canada, the U.S. National Underground Science Laboratory at Homestake and the Super-Kamikande in Japan ) have measured the number of neutrinos that actually reach Earth as a result of a specific reaction in the sun (thus the experiments are sensitive to only a small fraction of the solar neutrino spectrum). To better understand the shortfall of neutrinos on Earth, scientists have been trying to determine precisely how many neutrinos are emitted as a result of this reaction in the lab, so as to compare them with the number that actually reach Earth as measured by SNO, Kamiokande and Homestake.


However, mostly due to difficulties with the preparation and homogeneity of a central component in the reaction (the target made of the radioactive isotope of mass 7 of the beryllium element), large discrepancies persisted. The present experiment, conducted by Prof. Michael Hass of the Weizmann Institute’s Particle Physics Department, uses in a novel way a 2 mm diameter target of the beryllium 7 nuclei, prepared at the ISOLDE (CERN) laboratory and brought to the Van de Graaff accelerator of the Weizmann Institute, Israel, for the measurement of the reaction. The results of this measurement, with less than a 4% margin of error, may draw to a close this reaction’s standing as the largest source of error in the Standard Solar Model estimates of the measured neutrino flux.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>