Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mathematical models reveal ’molten’ and ’glassy’ states of RNA


Mathematical models have given physicists a new look at DNA’s chemical counterpart, RNA.

The models - showing that RNA behaves differently depending on the temperature of its environment - may help biologists better understand how life evolved on Earth.

The models suggest that high temperatures give twisted strands of RNA the flexibility to fold into many different shapes, while low temperatures cause it to collapse into a single shape.

Ralf Bundschuh, assistant professor of physics at Ohio State University, presented the results March 4 at the meeting of the American Physical Society in Austin, Texas.

RNA plays many different roles in a cell, such as the production of proteins that perform necessary functions, Bundschuh explained.

“People are probably more familiar with the genetic role of DNA, in which two strands of complementary base units bind to each other to create a double-helix structure. RNA behaves very much like a DNA molecule that has lost its complementary partner. In order for one strand of bases to form pairs, the strand must bend back onto itself -- it must fold,” he said.

The structure of folded RNA resembles a severely twisted rubber band, with the shape of loops and branches determining its biological function.

Exactly how RNA folds into any particular shape is a mystery. Other researchers have tried to tackle the problem with computer simulations, by calculating the possible formations that result from a certain number of base units coming together. But simulating very realistic RNA molecules -- that is, very long RNA strands with many base units -- is difficult.

Bundschuh and Terence Hwa of the University of California, San Diego, examined the problem differently. They have developed the first mathematical theory for the possible states of an RNA molecule.

In the past, scientists only knew for sure that RNA could fold into a given configuration, depending on its chemical makeup. Instead, these mathematical models show that high temperatures cause RNA to enter a flexible state in which it can take on a variety of configurations. The flexible state is known as the “molten” state. When temperatures fall too low, the RNA enters a tangled, or “glassy,” state.

“We know at high temperatures RNA is molten, and low temperatures, it is glassy. Somewhere in between, something has to happen to change its state from one to the other. We don’t know what that is, yet,” Bundschuh said.

Whether RNA forms a functional structure depends on the alignment of four base units -- adenine, guanine, cytosine and uracil -- a sequence of which resembles a strand of beads. When molten, the strand folds and unfolds with ease, and each base unit can connect with many different mates to form many possible overall shapes. In the glassy state, the strand “freezes” in a random pattern.

The results hold implications for the study of the related “protein folding problem.” Researchers are working to understand the issues nature has to overcome to design new RNA sequences, because someday researchers may be able to design sequences themselves, for drugs or other disease therapies.

“One does not want to end up with a sequence that gets stuck in some random structure, or cannot decide which structure to fold into,” Bundschuh said.

The work also has broader relevance for evolutionary biology, where experts have speculated that early life might have relied exclusively upon RNA.

“RNA could in fact be a stepping-stone to today’s world of DNA. DNA cannot replicate without proteins, and proteins cannot be produced without RNA,” Bundschuh said. “You could say we’re characterizing what evolution is up against.”

With five years’ effort, Bundschuh and Hwa have only just begun to be able to model simple RNA activities that occur in less than a second, countless times every day.

“Now we can better appreciate what biology has to do to create a functional RNA molecule,” he said.

Ohio State physics doctoral student Tsunglin Liu is working with Bundschuh to estimate how many base units would be required for computer simulations of more realistic RNA models, in order to observe the molten or glassy state. Liu has found that more than 8,000 units are necessary -- a computational task well beyond the reach of current studies, which are based on as few as 2,000 units.

Contact: Ralf Bundschuh, (614) 688-3978;

Written by Pam Frost Gorder, (614) 292-9475;

Pam Frost Gorder | EurekAlert!

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>