Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical models reveal ’molten’ and ’glassy’ states of RNA

05.03.2003


Mathematical models have given physicists a new look at DNA’s chemical counterpart, RNA.



The models - showing that RNA behaves differently depending on the temperature of its environment - may help biologists better understand how life evolved on Earth.

The models suggest that high temperatures give twisted strands of RNA the flexibility to fold into many different shapes, while low temperatures cause it to collapse into a single shape.


Ralf Bundschuh, assistant professor of physics at Ohio State University, presented the results March 4 at the meeting of the American Physical Society in Austin, Texas.

RNA plays many different roles in a cell, such as the production of proteins that perform necessary functions, Bundschuh explained.

“People are probably more familiar with the genetic role of DNA, in which two strands of complementary base units bind to each other to create a double-helix structure. RNA behaves very much like a DNA molecule that has lost its complementary partner. In order for one strand of bases to form pairs, the strand must bend back onto itself -- it must fold,” he said.

The structure of folded RNA resembles a severely twisted rubber band, with the shape of loops and branches determining its biological function.

Exactly how RNA folds into any particular shape is a mystery. Other researchers have tried to tackle the problem with computer simulations, by calculating the possible formations that result from a certain number of base units coming together. But simulating very realistic RNA molecules -- that is, very long RNA strands with many base units -- is difficult.

Bundschuh and Terence Hwa of the University of California, San Diego, examined the problem differently. They have developed the first mathematical theory for the possible states of an RNA molecule.

In the past, scientists only knew for sure that RNA could fold into a given configuration, depending on its chemical makeup. Instead, these mathematical models show that high temperatures cause RNA to enter a flexible state in which it can take on a variety of configurations. The flexible state is known as the “molten” state. When temperatures fall too low, the RNA enters a tangled, or “glassy,” state.

“We know at high temperatures RNA is molten, and low temperatures, it is glassy. Somewhere in between, something has to happen to change its state from one to the other. We don’t know what that is, yet,” Bundschuh said.

Whether RNA forms a functional structure depends on the alignment of four base units -- adenine, guanine, cytosine and uracil -- a sequence of which resembles a strand of beads. When molten, the strand folds and unfolds with ease, and each base unit can connect with many different mates to form many possible overall shapes. In the glassy state, the strand “freezes” in a random pattern.

The results hold implications for the study of the related “protein folding problem.” Researchers are working to understand the issues nature has to overcome to design new RNA sequences, because someday researchers may be able to design sequences themselves, for drugs or other disease therapies.

“One does not want to end up with a sequence that gets stuck in some random structure, or cannot decide which structure to fold into,” Bundschuh said.

The work also has broader relevance for evolutionary biology, where experts have speculated that early life might have relied exclusively upon RNA.

“RNA could in fact be a stepping-stone to today’s world of DNA. DNA cannot replicate without proteins, and proteins cannot be produced without RNA,” Bundschuh said. “You could say we’re characterizing what evolution is up against.”

With five years’ effort, Bundschuh and Hwa have only just begun to be able to model simple RNA activities that occur in less than a second, countless times every day.

“Now we can better appreciate what biology has to do to create a functional RNA molecule,” he said.

Ohio State physics doctoral student Tsunglin Liu is working with Bundschuh to estimate how many base units would be required for computer simulations of more realistic RNA models, in order to observe the molten or glassy state. Liu has found that more than 8,000 units are necessary -- a computational task well beyond the reach of current studies, which are based on as few as 2,000 units.


Contact: Ralf Bundschuh, (614) 688-3978; Bundschuh.2@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | EurekAlert!

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>