Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists get first close look at stardust

28.02.2003


For the first time, scientists have identified and analyzed single grains of silicate stardust in the laboratory. This breakthrough, to be reported in the Feb. 27 issue of Science Express, provides a new way to study the history of the universe.


"Astronomers have been studying stardust through telescopes for decades," said first author Scott Messenger, Ph.D., senior research scientist in the Laboratory for Space Sciences at Washington University in St. Louis. "And they have derived models of what it must be like, based on wiggles in their spectral recordings. But they never dreamed it would be possible to look this closely at a grain of stardust that has been floating around in the galaxy."

Most stardust is made of tiny silicate grains, much like dust from rocks on earth. Away from city lights, you can see the dust as a dark band across the Milky Way. This dust comes from dying and exploded stars. Scientists think stars form when these dust clouds collapse and that some of this dust became trapped inside asteroids and comets when our own sun formed.

The researchers found the stardust in tiny fragments of asteroids and comets--interplanetary dust particles (IDPs) --collected 20 km above the earth by NASA planes. A typical IDP is a mishmash of more than 100,000 grains gleaned from different parts of space. Until recently, ion probes had to analyze dozens of grains at one time and so were able to deduce only the average properties of a sample.



In 2001, with help from NASA and the National Science Foundation, Washington University bought a newly available and much more sensitive ion probe. Made by Cameca in Paris, the NanoSIMS probe can resolve particles as small as 100 nanometers in diameter. A million such particles side by side would make a centimeter. The grains in IDPs range from 100 to 500 nanometers. "So like the Hubble telescope, the NanoSIMS allows us to see things on a much finer scale than ever before," Messenger said.

Lindsay P. Keller, Ph.D., at NASA’s Johnson Space Center in Houston, first examined thin slices of IDPs under the transmission electron microscope. He identified the chemical elements in single grains and determined whether the grains were crystals or coated with organic material.

Using the NanoSIMS probe, the Washington University investigators then measured the relative amounts of two isotopes of oxygen in more than a thousand grains from nine IDPs. The data told them which grains had come from stars. The researchers discovered the first grain of stardust in the first half hour of their first NanoSIMS session. "Finding something that people have been seeking for such a long time was incredibly exciting," Messenger said.

Stardust was surprisingly common in the IDPs. "We found that 1 percent of the mass of these interplanetary dust particles was stardust," Messenger explained. "So stardust is about 50 times as abundant in these particles as in meteorites, which suggests that it comes from far more primitive bodies."

The isotopic measurements identified six stardust grains from outside our solar system. Three appeared to have come from red giants or asymptotic giant branch stars, two late stages in stellar evolution. A fourth was from a star containing little metal. The fifth and sixth possibly came from a metal-rich star or a supernova.

Although this work is just beginning, some novel findings have emerged. For example, one of the grains was crystalline, which contradicts the idea that silicate stardust grains are always amorphous. "A single grain of stardust can bring down a long-established theory," Messenger said.

The researchers will probe the history of stardust with further studies of IDP chemistry and microstructure. "The interstellar medium plays an incredibly important role in star formation, but you can learn only so much by using a telescope," Messenger said. "You can find out so much more by studying actual samples."



A grant from NASA funded this research.
Images of IDPs are available.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/
http://stardust.wustl.edu
http://www.sciencemag.org/feature/express/expresstwise.shl

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>