Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists get first close look at stardust

28.02.2003


For the first time, scientists have identified and analyzed single grains of silicate stardust in the laboratory. This breakthrough, to be reported in the Feb. 27 issue of Science Express, provides a new way to study the history of the universe.


"Astronomers have been studying stardust through telescopes for decades," said first author Scott Messenger, Ph.D., senior research scientist in the Laboratory for Space Sciences at Washington University in St. Louis. "And they have derived models of what it must be like, based on wiggles in their spectral recordings. But they never dreamed it would be possible to look this closely at a grain of stardust that has been floating around in the galaxy."

Most stardust is made of tiny silicate grains, much like dust from rocks on earth. Away from city lights, you can see the dust as a dark band across the Milky Way. This dust comes from dying and exploded stars. Scientists think stars form when these dust clouds collapse and that some of this dust became trapped inside asteroids and comets when our own sun formed.

The researchers found the stardust in tiny fragments of asteroids and comets--interplanetary dust particles (IDPs) --collected 20 km above the earth by NASA planes. A typical IDP is a mishmash of more than 100,000 grains gleaned from different parts of space. Until recently, ion probes had to analyze dozens of grains at one time and so were able to deduce only the average properties of a sample.



In 2001, with help from NASA and the National Science Foundation, Washington University bought a newly available and much more sensitive ion probe. Made by Cameca in Paris, the NanoSIMS probe can resolve particles as small as 100 nanometers in diameter. A million such particles side by side would make a centimeter. The grains in IDPs range from 100 to 500 nanometers. "So like the Hubble telescope, the NanoSIMS allows us to see things on a much finer scale than ever before," Messenger said.

Lindsay P. Keller, Ph.D., at NASA’s Johnson Space Center in Houston, first examined thin slices of IDPs under the transmission electron microscope. He identified the chemical elements in single grains and determined whether the grains were crystals or coated with organic material.

Using the NanoSIMS probe, the Washington University investigators then measured the relative amounts of two isotopes of oxygen in more than a thousand grains from nine IDPs. The data told them which grains had come from stars. The researchers discovered the first grain of stardust in the first half hour of their first NanoSIMS session. "Finding something that people have been seeking for such a long time was incredibly exciting," Messenger said.

Stardust was surprisingly common in the IDPs. "We found that 1 percent of the mass of these interplanetary dust particles was stardust," Messenger explained. "So stardust is about 50 times as abundant in these particles as in meteorites, which suggests that it comes from far more primitive bodies."

The isotopic measurements identified six stardust grains from outside our solar system. Three appeared to have come from red giants or asymptotic giant branch stars, two late stages in stellar evolution. A fourth was from a star containing little metal. The fifth and sixth possibly came from a metal-rich star or a supernova.

Although this work is just beginning, some novel findings have emerged. For example, one of the grains was crystalline, which contradicts the idea that silicate stardust grains are always amorphous. "A single grain of stardust can bring down a long-established theory," Messenger said.

The researchers will probe the history of stardust with further studies of IDP chemistry and microstructure. "The interstellar medium plays an incredibly important role in star formation, but you can learn only so much by using a telescope," Messenger said. "You can find out so much more by studying actual samples."



A grant from NASA funded this research.
Images of IDPs are available.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/
http://stardust.wustl.edu
http://www.sciencemag.org/feature/express/expresstwise.shl

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>