Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Butterflies and photonic chrystals


The small structures in the scanning electron microscope image of a butterfly wing scale (a) are natural photonic crystals that give the wings of some butterflies their brilliant iridescent blue colors. The structures in the second image (b) are responsible for a blue-violet iridescence. In the third image (c), the small structures are almost entirely absent, and the butterfly wing scales are a dull brown shade. New research suggests that photonic crystals keep butterfly wings cooler, as well as making them beautiful. In higher elevations where butterflies are more reliant on sunlight to keep them warm, some of the insects have evolved wing scales in which the photonic crystals have been disrupted (as in image c), improving the chances that they survive long enough to mate despite the frigid climate.
Source: L. P. Biro et al., Physical Review E, February 2003

In recent years, scientists have discovered that the iridescence of various colorful creatures, from beetles to birds to butterflies, is often due to microscopic structures known as photonic crystals. Unlike pigments, which absorb or reflect certain frequencies of light as a result of their chemical composition, the way that photonic crystals reflect light is a function of their physical structure. That is, a material containing a periodic array of holes or bumps of a certain size may reflect blue light, for example, and absorb other colors even though the crystal material itself is entirely colorless. Because a crystal array looks slightly different from different angles (unlike pigments, which are the same from any angle), photonic crystals can lead to shifting shades of iridescent color that may help some animals attract mates or establish territories.

A collaboration of researchers from Hungary and Belgium (Jean-Pol Vigneron, Universitaires Notre-Dame de la Paix, Brussels,, 011+32-81 724711) may have discovered why the males in certain populations of lycaenid butterflies carry the striking, photonic crystal coloration, and males in other lycaenid populations do not. The researchers examined butterfly scales through high-resolution scanning electron microscopes (see image), and confirmed that indeed the colorful butterflies’ scales included arrays of submicron-sized holes that formed natural photonic crystals. Their closely related brethren from higher elevations did not have the hole arrays in their scales, and their wings were dull brown rather than iridescent blue. The difference, it seems, may be due to a question of survival. The researchers found that the plain brown butterfly wings warmed much more than the iridescent blue wings when each were exposed to identical illumination. The researchers believe that the butterflies at high elevations trade flashy iridescence for light-absorbing brown so that they can withstand colder temperatures, and survive long enough to mate.

If photonic crystals can have such a dramatic impact on butterfly thermal management, suggest the researchers, manmade photonic crystals may someday provide flexible thermal protection in extreme environments, possibly being incorporated into such things as space suits or desert garments. (L. P. Biro et al, Physical Review E, February 2003; text )

Phil Shewe | Bulletin of Physics News

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>