Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Butterflies and photonic chrystals

28.01.2003


The small structures in the scanning electron microscope image of a butterfly wing scale (a) are natural photonic crystals that give the wings of some butterflies their brilliant iridescent blue colors. The structures in the second image (b) are responsible for a blue-violet iridescence. In the third image (c), the small structures are almost entirely absent, and the butterfly wing scales are a dull brown shade. New research suggests that photonic crystals keep butterfly wings cooler, as well as making them beautiful. In higher elevations where butterflies are more reliant on sunlight to keep them warm, some of the insects have evolved wing scales in which the photonic crystals have been disrupted (as in image c), improving the chances that they survive long enough to mate despite the frigid climate.
Source: L. P. Biro et al., Physical Review E, February 2003



In recent years, scientists have discovered that the iridescence of various colorful creatures, from beetles to birds to butterflies, is often due to microscopic structures known as photonic crystals. Unlike pigments, which absorb or reflect certain frequencies of light as a result of their chemical composition, the way that photonic crystals reflect light is a function of their physical structure. That is, a material containing a periodic array of holes or bumps of a certain size may reflect blue light, for example, and absorb other colors even though the crystal material itself is entirely colorless. Because a crystal array looks slightly different from different angles (unlike pigments, which are the same from any angle), photonic crystals can lead to shifting shades of iridescent color that may help some animals attract mates or establish territories.

A collaboration of researchers from Hungary and Belgium (Jean-Pol Vigneron, Universitaires Notre-Dame de la Paix, Brussels, jean-pol.vigneron@fundp.ac.be, 011+32-81 724711) may have discovered why the males in certain populations of lycaenid butterflies carry the striking, photonic crystal coloration, and males in other lycaenid populations do not. The researchers examined butterfly scales through high-resolution scanning electron microscopes (see image), and confirmed that indeed the colorful butterflies’ scales included arrays of submicron-sized holes that formed natural photonic crystals. Their closely related brethren from higher elevations did not have the hole arrays in their scales, and their wings were dull brown rather than iridescent blue. The difference, it seems, may be due to a question of survival. The researchers found that the plain brown butterfly wings warmed much more than the iridescent blue wings when each were exposed to identical illumination. The researchers believe that the butterflies at high elevations trade flashy iridescence for light-absorbing brown so that they can withstand colder temperatures, and survive long enough to mate.

If photonic crystals can have such a dramatic impact on butterfly thermal management, suggest the researchers, manmade photonic crystals may someday provide flexible thermal protection in extreme environments, possibly being incorporated into such things as space suits or desert garments. (L. P. Biro et al, Physical Review E, February 2003; text www.aip.org/physnews/select )

Phil Shewe | Bulletin of Physics News

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>