Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists use microscope to view magnetism at atomic level


Scientists and engineers build the transistors that run televisions, radios and similar electronic devices based on the moving electric charges of electrons. But the electron also has another key property: a magnetic "spin" that scientists believe could be exploited to develop faster, smaller and more efficient devices.

The first step is to determine the magnetic properties of materials that could be used to create futuristic nanoscale devices, a task that has escaped scientists until now. But research published online November 6 in the journal Physical Review Letters by a team of Ohio University physicists details a technique for measuring magnetism at the atomic scale using a scanning tunneling microscope.

Physicists Arthur Smith and Haiqiang Yang employed the high-powered microscope to explore the magnetic properties of a new crystalline compound comprised of manganese and nitrogen, which has potential use in future electronic or magnetic devices.

"It’s the best technique we have for measuring magnetic structure at the atomic scale," said Smith, whose project is funded by the National Science Foundation.

In a device that employs both electronics and "spintronics," a thin layer of magnetic material would be added to conventional electronics to improve performance. Possible applications include a spintronics LED for computer screens, more powerful hard drives and the quantum computer, which could make it possible to perform certain types of complex calculations which would be virtually impossible using conventional computers, said Smith, an assistant professor of physics and astronomy.

"These devices are so rare, so far in the future, that people have only begun to think about what to use them for," he said.

One obstacle scientists face is making the scientific process behind such experimental devices work at room temperature. Current devices work at cold temperatures, typically at or below minus 320 degrees Fahrenheit.

Smith and Yang, a postdoctoral researcher at Ohio University, have been studying the properties of the crystalline compound of manganese and nitrogen for two years, as it has the potential to function at room temperature, Yang said. In the recent experiment, the scientists coated the tip of a needle with magnetized atoms. Then, using it in their microscope like the needle of a record player to "read" the recorded information of a tiny surface area, they observed the magnetic poles of some rows of atoms pointing in one direction, and the poles of other rows of atoms pointing in the opposite direction. On non-magnetic surfaces, the atoms do not have oriented magnetic poles.

Other scientists have had little success using other techniques – which are too indirect or lack the necessary sensitivity -- to image magnetic spin at the atomic level. This suggests that the spin-polarized scanning tunneling microscope holds promise for research in this area, Smith said.

"Our paper provides new evidence that this technique works and that it’s a very important technique for nanotechnology," he said.

Nanomagnetism is a growing area of nanotechnology, Smith said, and scientists in the field expect to begin building nanoscale magnetic structures in the next two years. Now that the physicists have been able to measure spin at the nanoscale, Yang added, they also hope to use the scanning tunneling microscope to modify the surface of magnetic compounds.

Collaborators on the paper are Margarita Prikhodko and Walter Lambrecht of Case Western Reserve University.

Andrea Gibson | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>