Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicist probes dark, violent side of the universe; studies highest energy photons

29.10.2002


In search of cosmic mayhem


The Whipple Observatory gamma-ray telescope



A physicist at Washington University in St. Louis working with scientists at the Smithsonian Institution is unveiling the dark, violent side of the universe.

Studying the highest energy photons known to science, Washington University Associate Professor of Physics James H. Buckley, Ph.D., and his colleagues are analyzing bursts of gamma rays released from massive black holes at the center of so-called active galaxies.


Using the Whipple Observatory gamma-ray telescope and camera in the Santa Rita Mountains, south of Tucson, the Whipple collaboration, of which Buckley is a member, first discovered astronomical sources of terra-electron volt (TeV) from the Crab Nebula. Like meteor showers, each TeV photon leaves a faint blue streak in the atmosphere that points back to its source. Over the last decade, they also have discovered six occurrences of energetic gamma-ray flares from peculiar galaxies known as Active galaxies or Blazars. "We are learning about the physical conditions inside what are known as relativistic jets, which produce TeV gamma rays, " said Buckley. "The jets are composed of matter and radiation that move very close to the speed of light, scattering ambient light up to extremely high (TeV) energies.

"Just this June (2002), we discovered enormous flares of TeV gamma rays from an object called 1 ES 1959+650 that lasted for hours. The flares were incredibly rapid, signifying a very compact emission region, consistent with the Black Hole hypothesis."

In addition to unveiling the nature of the monster that lies at the center of these enigmatic galaxies, the technique of TeV gamma-ray astronomy also holds promise to reveal the nature of the "dark matter" that comprises the majority of our own galaxy.

It is estimated that less than 10 % of the matter in the universe is ordinary matter such as protons, neutrons and electrons. The rest is composed of two dark components: About 30% of the universe appears to be composed of "dark matter" and another 65 % of some new form of "dark energy." While these two components dominate the mass budget for the universe, their nature is unknown.

"It is widely believed that cold dark matter formed the first structure in the universe, and that galaxies subsequently formed by falling into the gravitational potential wells formed by the dark matter," Buckley explained. "A dark matter halo with a very high central density should exist in our own galaxy. Favored models for this dark matter predict that annihilation of the dark matter particles should result in monochromatic gamma-ray emission in the energy range 0.1 TeV to 8 TeV. "

Buckley said that planned experiments may well have the sensitivity to detect this new component of the universe.

Over the last half century new windows on the invisible universe were opened with radio, and x-ray astronomy. In just the last decade, the universe has been revealed in a new, even more extreme form of radiation, terra-electron volt (TeV) gamma rays. These photons are so energetic that no terrestrial particle accelerator can produce them.

A TeV photon has the same energy as an electron accelerated by a trillion volts. While there are no sources of such photons on the Earth, TeV gamma rays appear to be produced by an ever-increasing number of astrophysical sources.

The Whipple Observatory gamma-ray telescope is a 10-meter reflector that images the faint flashes of blue light from the showers of energetic particles produced as individual gamma-ray photons interact in the Earth’s atmosphere.

When an energetic gamma ray interacts in the atmosphere it produces an electron and a positron (the electron’s antiparticle). These go on to liberate more electrons and gamma rays and other matter. An avalanche called an electromagnetic cascade ensues. The particles in this "shower" are moving so rapidly that they emit an electromagnetic shock wave known as Cherenkov radiation, much like a sonic boom emitted by a supersonic jet.

A fast camera on the Whipple telescope takes 20 nanosecond snapshots of the streaks of light produced by each photon. Collectively, these streaks of Cherenkov light point back to the object much like lines of perspective converge at the distant horizon. Buckley and his colleagues analyze these images in detail and produce a picture of the sky at terra-electron volt energies.

One of the most exciting discoveries by the Whipple group is the TeV emission from active galactic nuclei, or AGNs. In these remarkable galaxies, a compact nucleus can outshine the rest of the galaxy by a factor of as much as 100 or 1000. The optical luminosity of the compact central object exceeds what could be produced by thermonuclear fusion, and is believed to result from the accretion of mass into the deep gravitational potential well of a supermassive black hole.

"Measurements of matter swirling around the central objects point to the existence of black holes with the mass of hundreds of millions of suns," said Buckley. "In many of these sources radio observations reveal jet- like outflows presumably aligned with the rotation axis of the central black hole. The TeV gamma-ray measurements have been used to provide a quantitative measure of the speed of these relativistic outflows, which appear to be traveling as much as 99.98 percent of the speed of light."

Questions

Contact: Tony Fitzpatrick, senior science editor, Washington University in St. Louis, 314-935-5272; tony_fitzpatrick@aismail.wustl.edu; or Gerry Everding, University Communications, 314-935-6375; gerry_everding@aismail.wustl.edu.

Gerry Everding | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>