Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water molecules star in action movies

17.09.2002


Scientists at the Lawrence Berkeley National Laboratory (Berkeley Lab) have produced the first ever action movies starring individual water molecules on a metal surface. The ending was a surprise even to the producers.


These two STM images show molecules of water being adsorbed on a palladium surface at 40 Kelvins. In (A), two individual molecules or monomers approach one another and in (B) they collide to form a dimer.


This graphic shows the trajectory of the STM tip as it tracks a water molecule in its random hopping from one nearest neighbor lattice point to another across the crystal of a palladium surface. The image was produced at 52.4 Kelvins.



Working with a unique scanning tunneling microscope (STM), a team led by Miquel Salmeron, a physicist with Berkeley Lab’s Materials Sciences Division, cooled the surface of a single crystal of palladium, a good catalyst for reactions involving hydrogen and water, to a temperature of about 40 Kelvins (-233 degrees Celsius) in an ultrahigh vacuum. Water molecules were then introduced onto this surface and their motion was tracked with the STM. As expected from previous studies, single molecules migrated across the surface to aggregate into clusters of two (dimers), three (trimers), four (tetramers) five (pentamers) and six (hexamers). The surprise came when the scientists were able to watch the molecules as they moved.

Isolated water molecules moved by hopping from one lattice point (on the substrate’s crystal) to the nearest neighboring point whereupon if they collided with another water molecule they began to form clusters," says Salmeron. "The speed with which the molecules moved increased by four orders of magnitude when dimers were formed. The mobility of trimers and tetramers was also very high compared to the isolated molecules."


This ran contrary to the usual storyline in which single molecules diffuse or move across a surface more rapidly than clusters. Salmeron likens the situation to pulling either one skater across the ice or a group of skaters connected by a line.

"Since each skater rubs against the surface of the ice, to pull them all together means a lot of rubbing," he says. "The situation can be quite different, however, when the sliding takes place over a corrugated surface, like atoms sliding over the atomic landscape of a surface."

What he and his colleagues observed in their movies was that the hydrogen bonds which held two, three or four water molecules together in a cluster forced the cluster into a geometric configuration that was mismatched with the lattice of the palladium surface. The individual water molecules within these clusters could no longer be bound to the palladium’s lattice points with the same strength as when they were isolated. This allowed dimers, trimers and tetramers to easily slide across the palladium’s surface.

When clusters reached five water molecules in size, however, the combined strength of the water-substrate bonds prevailed and the movement of the pentamers slowed or stopped altogether. The addition of a sixth water molecule created highly stable hexamer rings, which spread out as a hexagonal honeycomb structure over the palladium substrate. This, too, brought a surprise.

Explains Salmeron, "The hexagonal honeycomb of water molecules does not exactly match palladium’s lattice and as a result honeycombs grow to a certain size and then stop, forming islands across the substrate’s surface. As additional water molecules are introduced, they pile up on top of these islands. Slight heating will break these islands up into holes that form beautiful patterns, like nanometer-scale snow flakes."

Working with Salmeron on this study were Toshi Mitsui and Frank Ogletree, both with Berkeley Lab’s Materials Sciences Division, and Mark Rose and Evgueni Fomin, students with Physics Department of the University of California at Berkeley. Their results were reported in the September 13 issue of the journal Science.

A lot of time, effort, and money goes into water-proofing materials so they don’t stain, mildew, rust, or suffer any of the other damages that can happen when something gets wet. The interaction of water with surfaces drives a wide variety of important phenomena that include wetting, corrosion, ice-melting, electrochemistry, dissolution, and solvation. Such interactions are equally important to many biological processes as well. Despite the broad concern, the interactions of individual water molecules with surfaces have remained somewhat of a scientific enigma.

"Numerous fundamental questions regarding the adsorption of water on surfaces and its evolution from isolated molecules to clusters, complete layers, and beyond, remain unanswered," says Salmeron. "Structural probes that analyze cluster formation do not address the important issue of the movement of water on surfaces."

An STM is the ideal instrument for studying the diffusion of individual molecules or atoms along the surface of a material, Salmeron says. Working off a probe that tapers to a single atom at its point, the STM sweeps over a sample area barely a nanometer above the surface. An electrical current is generated by electrons that "tunnel" through the gap between the atoms on the sample surface and the STM tip. This current is extremely sensitive to changes in the gap distance and produces, through a feedback mechanism, displacements in the STM tip that can recorded and translated into topographic images of individual surface atoms. The Berkeley Lab STM is one of the few such instruments in the world that can be operated at the extremely low temperatures needed to slow the process of molecular diffusion down enough for it to be imaged.

"At 40 Kelvins, the diffusion of water on palladium proceeds slowly enough for us to make movies by acquiring sequences of images at 20 second intervals," says Salmeron. "By measuring jump distances and directions in our movie images, diffusion was observed to proceed by random hopping over to the nearest neighbor sites of the palladium substrate."

Diffusion was studied using an atom-tracking technique as well as the movie-making technique. The atom-tracking experiment confirmed the movie-based observations.

"Our findings allow for a deeper understanding of the physics and chemistry of water on surfaces," Salmeron says.

"Nature is always full of surprises and all it takes is to look carefully to discover new things."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>