Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biggest ever Gamma Ray search starts in Namibia


The world’s most sensitive Gamma Ray telescopes are being inaugurated in Namibia (in Southwest Africa) on September 3rd. The High Energy Stereoscopic System (H.E.S.S.), a European/African collaboration in which the UK is a partner, will look for Gamma Rays produced by the most energetic particles in the Universe. The array initially consists of four telescopes, the first of which will become operational next week. This one telescope alone is more sensitive than any other existing ground-based array or telescope working in this particular area of the electromagnetic spectrum.

Once all four telescopes are operational in late 2003, researchers from the University of Durham will use H.E.S.S. to investigate a range of extreme cosmic environments such as the supernova remnants formed when a star dies. A major goal is to see if these are a source of cosmic rays - charged particles that constantly bombard the Earth from space. The origin of cosmic rays is difficult to determine as they are influenced by the magnetic field of our Galaxy. However, the Gamma Rays they emit travel in a straight line, so they may reveal the primary source of the cosmic rays. H.E.S.S. will also be probing the structure of pulsars (rapidly rotating stars formed when a massive star explodes at the end of its life, which emit pulses across the range of the electromagnetic spectrum) and active galactic nuclei to find the source of their energy.

Dr Paula Chadwick, of the Durham team, explains: "H.E.S.S. is set to give us unique insights into some of the most extreme environments in the universe. We have some expectations about what we will be able learn more about - supernova remnants, active galaxies and so on - but experience tells us that when you improve the sensitivity of your telescope, you see things you never expected as well. It`s going to be very exciting!"

When Gamma Rays are absorbed by the Earth’s atmosphere, pairs of electrons and positrons are created and emit tiny flashes of light in a process known as Cherenkov radiation. Telescopes such as H.E.S.S can detect these tiny flashes of light. By using the Earth’s atmosphere as part of the detector, the telescopes have much greater sensitivity than an equivalent space based device, and can detect far fainter Gamma Ray sources than previously possible.

Gamma rays are usually produced by particles moving very rapidly. The study of Gamma Rays enables astronomers to learn more about systems that accelerate these particles, such as active galactic nuclei where supermassive black holes produce jets of particles travelling near the speed of light. These are strong and highly variable sources of gamma rays. Gamma Rays can also be produced by the annihilation of massive particles that may be the source of the ‘missing mass’ in the universe.

The University of Durham’ s role in the design and manufacture of HESS has been in calibrating the camera that will record the Cherenkov radiation and in developing systems that will measure the atmospheric conditions. This is critically important as variations in the atmosphere, such as cloud cover, can dramatically reduce the amount of light reaching the telescopes. The Durham scientists are now working on various refinements to calibration systems, and a more efficient mirror making technique that they hope to use when the array is extended from the current 4 telescopes to the planned 12 or 16.

Namibia is an excellent site scientifically, one of the best in the world for ground-based optical astronomy and with ideal atmospheric conditions for the techniques used by H.E.S.S. However, practically it has represented a huge challenge with limited road access to the site and water, power and computing connections having to be put in place specially.

Julia Maddock | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>