Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biggest ever Gamma Ray search starts in Namibia

28.08.2002


The world’s most sensitive Gamma Ray telescopes are being inaugurated in Namibia (in Southwest Africa) on September 3rd. The High Energy Stereoscopic System (H.E.S.S.), a European/African collaboration in which the UK is a partner, will look for Gamma Rays produced by the most energetic particles in the Universe. The array initially consists of four telescopes, the first of which will become operational next week. This one telescope alone is more sensitive than any other existing ground-based array or telescope working in this particular area of the electromagnetic spectrum.



Once all four telescopes are operational in late 2003, researchers from the University of Durham will use H.E.S.S. to investigate a range of extreme cosmic environments such as the supernova remnants formed when a star dies. A major goal is to see if these are a source of cosmic rays - charged particles that constantly bombard the Earth from space. The origin of cosmic rays is difficult to determine as they are influenced by the magnetic field of our Galaxy. However, the Gamma Rays they emit travel in a straight line, so they may reveal the primary source of the cosmic rays. H.E.S.S. will also be probing the structure of pulsars (rapidly rotating stars formed when a massive star explodes at the end of its life, which emit pulses across the range of the electromagnetic spectrum) and active galactic nuclei to find the source of their energy.

Dr Paula Chadwick, of the Durham team, explains: "H.E.S.S. is set to give us unique insights into some of the most extreme environments in the universe. We have some expectations about what we will be able learn more about - supernova remnants, active galaxies and so on - but experience tells us that when you improve the sensitivity of your telescope, you see things you never expected as well. It`s going to be very exciting!"


When Gamma Rays are absorbed by the Earth’s atmosphere, pairs of electrons and positrons are created and emit tiny flashes of light in a process known as Cherenkov radiation. Telescopes such as H.E.S.S can detect these tiny flashes of light. By using the Earth’s atmosphere as part of the detector, the telescopes have much greater sensitivity than an equivalent space based device, and can detect far fainter Gamma Ray sources than previously possible.

Gamma rays are usually produced by particles moving very rapidly. The study of Gamma Rays enables astronomers to learn more about systems that accelerate these particles, such as active galactic nuclei where supermassive black holes produce jets of particles travelling near the speed of light. These are strong and highly variable sources of gamma rays. Gamma Rays can also be produced by the annihilation of massive particles that may be the source of the ‘missing mass’ in the universe.

The University of Durham’ s role in the design and manufacture of HESS has been in calibrating the camera that will record the Cherenkov radiation and in developing systems that will measure the atmospheric conditions. This is critically important as variations in the atmosphere, such as cloud cover, can dramatically reduce the amount of light reaching the telescopes. The Durham scientists are now working on various refinements to calibration systems, and a more efficient mirror making technique that they hope to use when the array is extended from the current 4 telescopes to the planned 12 or 16.

Namibia is an excellent site scientifically, one of the best in the world for ground-based optical astronomy and with ideal atmospheric conditions for the techniques used by H.E.S.S. However, practically it has represented a huge challenge with limited road access to the site and water, power and computing connections having to be put in place specially.

Julia Maddock | alfa
Further information:
http://www.mpi-hd.mpg.de/hfm/HESS/HESS.html

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>