Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barred Spiral Galaxies are Latecomers to the Universe

30.07.2008
In a landmark study of more than 2,000 spiral galaxies from the largest galaxy census conducted by NASA's Hubble Space Telescope, astronomers found that so-called barred spiral galaxies were far less plentiful 7 billion years ago than they are today, in the local universe. The study's results confirm the idea that bars are a sign of galaxies reaching full maturity as the "formative years" end. The observations are part of the Cosmic Evolution Survey (COSMOS).

A frequent sign of the maturity of a spiral galaxy is the formation of a ribbon of stars and gas that slices across the nucleus, like the slash across a "no smoking" sign.

In a landmark study of more than 2,000 spiral galaxies from the largest galaxy census conducted by NASA's Hubble Space Telescope, astronomers found that so-called barred spiral galaxies were far less plentiful 7 billion years ago than they are today, in the local universe.

The study's results confirm the idea that bars are a sign of galaxies reaching full maturity as the "formative years" end. The observations are part of the Cosmic Evolution Survey (COSMOS).

This new detailed look at the history of bar formation, made with Hubble's Advanced Camera for Surveys, provides clues to understanding when and how spiral galaxies formed and evolved over time.

A team led by Kartik Sheth of the Spitzer Science Center at the California Institute of Technology in Pasadena discovered that only 20 percent of the spiral galaxies in the distant past possessed bars, compared with nearly 70 percent of their modern counterparts.

Bars have been forming steadily over the last 7 billion years, more than tripling in number. "The recently forming bars are not uniformly distributed across galaxy masses, however, and this is a key finding from our investigation," Sheth explained. "They are forming mostly in the small, low-mass galaxies, whereas among the most massive galaxies, the fraction of bars was the same in the past as it is today."

The findings, Sheth continued, have important ramifications for galaxy evolution. "We know that evolution is generally faster for more massive galaxies: They form their stars early and fast and then fade into red disks. Low-mass galaxies are known to form stars at a slower pace, but now we see that they also made their bars slowly over time," he said.

COSMOS covers an area of sky nine times larger than the full Moon, surveying 10 times more spiral galaxies than previous observations. In support of the Hubble galaxy images, the team derived distances to the galaxies in the COSMOS field using data from Hubble and an assortment of ground-based telescopes.

Bars form when stellar orbits in a spiral galaxy become unstable and deviate from a circular path. "The tiny elongations in the stars' orbits grow and they get locked into place, making a bar," explained team member Bruce Elmegreen of IBM's research Division in Yorktown Heights, N.Y. "The bar becomes even stronger as it locks more and more of these elongated orbits into place. Eventually a high fraction of the stars in the galaxy's inner region join the bar."

Added team member Lia Athanassoula of the Laboratoire d'Astrophysique de Marseille in France: "The new observations suggest that the instability is faster in more massive galaxies, perhaps because their inner disks are denser and their gravity is stronger."

Bars are perhaps one of the most important catalysts for changing a galaxy. They force a large amount of gas towards the galactic center, fueling new star formation, building central bulges of stars, and feeding massive black holes.

"The formation of a bar may be the final important act in the evolution of a spiral galaxy," Sheth said. "Galaxies are thought to build themselves up through mergers with other galaxies. After settling down, the only other dramatic way for galaxies to evolve is through the action of bars."

Our Milky Way Galaxy, another massive barred spiral, has a central bar that probably formed somewhat early, like the bars in other large galaxies in the Hubble survey. "Understanding how bars formed in the most distant galaxies will eventually shed light on how it occurred here, in our own backyard," Sheth said.

Other members of the study include Debra Elmegreen (Vassar College); Nick Scoville (COSMOS principal investigator); Peter Capak, Richard Ellis, Mara Salvato, and Lori Spalsbury (California Institute of Technology); Roberto Abraham (University of Toronto); Bahram Mobasher (University of California, Riverside); Eva Schinnerer (Max Planck Institute for Astronomy, Heidelberg); Linda Strubbe and Andrew West (University of California, Berkeley); Mike Rich (University of California, Los Angeles); and Marcella Carollo (ETH Zurich).

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA) and is managed by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Md. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, D.C.

Donna Weaver | Newswise Science News
Further information:
http://www.stsci.edu
http://www.caltech.edu
http://hubblesite.org/news/2008/29

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>