Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New in depth study to understand and control the optical damage caused by lasers on

03.07.2008
A new study undertaken by the non lineal optics and wave guides research group belonging to the department of Material Science of the UAM has advanced current understanding as well as the control of optical damage in crystals, offering new ways to increase light-power output of future optical integrated circuits.

Many of the lasers used today, both in scientific or technological applications have such a high light output power that the light itself damages or even destroys the crystals used to control, guide or manipulate it inside photonic devices (devices that only work with light).

Even at not so high powers, distortion effects take place in crystalline materials that change the characteristics of the laser beam as it propagates through the material. This effect is called optical damage and is mainly caused by the photorefractive phenomenon, which is caused by the presence of defects or atomic impurities, the electrons of which are excited by the light and scatter within the material. This movement of electrons creates internal electrical fields that alter the refractive index of electrotropic crystals, hence affecting the propagation of the light through them.

In many cases, the photorefractive effect is useful. It grants control over the propagation of light in a crystal by means of other light beams and also allows the storage of information as holograms. Nevertheless, at high light intensities, the photorefractive effect strongly degrades the light beam (fig. 1), a fact which currently introduces great difficulties for the arrival of new photonic integrated devices such as micro lasers, electro optical modulators, or frequency transducers that require higher efficiencies at higher intensities.

For many years, researchers from the non lineal optics and wave guides group of the department of Material Science of the UAM have studied the response of one of the most used crystals in the history of photonics, lithium niobate, to intense laser light. Their knowledge has made possible the development of a model that explains the optical damage through photorefractive effects in this crystal but it can also be applied to other electro-optic crystals. The most relevant idea of this model is based on new discoveries relating to the atomic defects of crystals that influence the photo refraction at high light intensities as well as the capacity to amplify optical noise.

With this model the minimum light intensity (Sensory threshold) at which the damage appears, as a function of defect concentration, temperature and other crystal properties can be predicted. The study also offers scientists and physicists a guide to optimize the properties of the crystal and the design of devices, enabling a rise of the laser light intensity in the crystal to 106 W/cm2, which represents an increase of the damage intensity threshold of a normal crystal by a factor of 10,000.

This study was carried out by the researchers Mercedes Carrascosa, Angel García Cabañes, José Manuel Cabrera and the doctorate students Javier Villarroel y Jesús Carnicero from the department of Material Science of the UAM has been published in the prestigious magazine of the American optics society, “Optics Express” in January 2008 (vol. 16, pages 115-120).

Oficina Información Científica | alfa
Further information:
http://www.uam.es
http://dx.doi.org/10.1364/OE.16.000115

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>