Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Demonstrates Super-sensitive Explosives Detector

27.06.2008
Using a laser and a device that converts reflected light into sound, researchers at the Department of Energy’s Oak Ridge National Laboratory can detect explosives at distances exceeding 20 yards.

The method is a variation of photoacoustic spectroscopy but overcomes a number of problems associated with this technique originally demonstrated by Alexander Graham Bell in the late 1880s. Most notably, ORNL researchers are able to probe and identify materials in open air instead of having to introduce a pressurized chamber, which renders photoacoustic spectroscopy virtually useless for security and military applications.

ORNL’s technique, detailed in Applied Physics Letters 92, involves illuminating the target sample with an eye-safe pulsed light source and allowing the scattered light to be detected by a quartz crystal tuning fork.

“We match the pulse frequency of the illuminating light with the mechanical resonant frequency of the quartz crystal tuning fork, generating acoustic waves at the tuning fork’s air-surface interface,” said Charles Van Neste of ORNL’s Biosciences Division. “This produces pressures that drive the tuning fork into resonance.”

The amplitude of this vibration is proportional to the intensity of the scattered light beam falling on the tuning fork, which because of the nature of quartz creates a piezoelectric voltage.

Van Neste and co-authors Larry Senesac and Thomas Thundat note that other advantages of quartz tuning fork resonators include compact size, low cost, commercial availability and the ability to operate in field conditions environments.

For their experiments, researchers used tributyl phosphate and three explosives – cyclotrimethylenetrinitromine, trinitrotoluene, commonly known as TNT, and pentaerythritol tetranitrate. They were able to detect trace residues with lasers 100 times less powerful than those of competing technologies.

While the researchers have been able to detect explosives at 20 meters, using larger collection mirrors and stronger illumination sources, they believe they can achieve detection at distances approaching 100 meters.

This research was funded by DOE’s Office of Nonproliferation Research and Development and the Office of Naval Research. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | newswise
Further information:
http://www.ornl.gov/news

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>