Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopped cold by a hint of disorder

13.06.2008
With tiny modifications, such as the introduction of impurities or defects, some conducting materials suddenly become insulating. For Philip Anderson, 1977 Physics Nobel Prize winner, the minor disorder introduced by impurities is enough to completely stop electron movement inside a solid.

Anderson's hypothesis had been proved indirectly, but the phenomenon had never been directly observed with particles such as atoms or electrons until recently, when it was witnessed by CNRS researchers Alain Aspect (1) and Philippe Bouyer and their team at the Institut d'Optique (2).

They have, for the first time, shown atoms subjected to minor disorder coming to a complete stop. Published in the June 12, 2008 issue of the journal Nature, these results will make it possible to better understand the role of disorder in the electrical properties of certain materials.

Introducing disorder to certain conducting materials is sometimes enough to make them suddenly become insulating. On our scale, that would be like saying that a few blades of grass scattered haphazardly over a golf course could stop a full-speed golf ball in its tracks. Admittedly, this would a surprising situation, and at our macroscopic scale, small perturbations can slow the movement of material objects, but can never stop them. But this is different at a microscopic level, where matter can also behave like a wave.

In a perfectly ordered solid, an electron moves freely without being disturbed by the underlying regular crystal structure. In disordered solids, however, any flaw will diffuse the matter wave in multiple directions. Combining all these disorder-generated waves can lead to a wave that does not propagate and remains frozen in the crystal.

The electrons (or the atoms) stop their movement, which, in the case of electrons, turns the material into an insulator. Envisioned by Anderson in 1958, this scenario emphasizes the fundamental role of disorder as well as the relevance of studying the electrical properties of disordered materials like amorphous silicon.

In light of the fundamental discoveries made in the 1930s about semi-conductors that led to the invention of the transistor and then to integrated circuits, Anderson's model created strong interest among physicists. While theoretical physicists strived to understand its underlying nature and its significance, experimental physicists tried to observe the phenomenon. Even though convincing experiments existed, direct observation of particle matter located in a weak disorder remained an unattainable goal.

First direct evidence of the Anderson scenario

French researchers at LCFIO took on the challenge by constructing a simple model of the situation that could lead to this phenomenon, called "Anderson localization." In their experiment, ultra-cold (3) atoms play the role of electrons, while the disordered environment is replaced by a perfectly controlled disorder created by light from a laser beam. With the help of a waveguide, the atoms are limited to unidirectional movement. Without disorder, the atoms propagate freely, but when disorder is introduced, all atomic movement stops within a fraction of a second. The researchers then observed the atomic density profile. Its exponential form is characteristic of the scenario envisioned by Anderson (see figure below). By varying the experimental parameters, the researchers were also able to test the theoretical model developed by Laurent Sanchez-Palencia's team at the atomic optics group.

Armed with results obtained from a radically simplified scenario, the physicists at the Institut d'optique now plan on addressing more complex situations in which atoms can move in a plane, or even in the three directions of space. For these conditions approaching those of real materials, theory can not currently precisely predict all situations; experiments alone constitute a type of quantum simulator that can provide part of the answer. Maybe then, by transferring these results to electrons, it will be possible to better define the behavior of these particles in disordered environments. Such results could, in the long run, improve amorphous silicon-based electronic devices, for example.

Used notably in TFT-LCD screens and in some photovoltaic cells, amorphous silicon is significantly less expensive to produce, but currently less effective than the crystalline silicon that forms the base of high performance electronic devices.

(1) CNRS gold medal, 2005.

(2) A team at the atomic optics group which is part of the Laboratoire
Charles Fabry de l'Institut d'optique (LCFIO, CNRS / Université Paris
11/Institut Optique graduate school).
(3) These ultra-cold atoms are in the form of a diluted Bose-Einstein
condensate, formed from several thousand atoms described by the same
wave function, making it possible to observe the atomic density profile.

Julien Guillaume | alfa
Further information:
http://www.cnrs-dir.fr

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>