Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Hopes to Use New Technology to Search for ETs

06.06.2008
A team is briefing fellow scientists about plans to use new technology to take advantage of recent, promising ideas on where to search for extraterrestrial intelligence in our galaxy.

A Johns Hopkins astronomer is a member of a team briefing fellow scientists about plans to use new technology to take advantage of recent, promising ideas on where to search for possible extraterrestrial intelligence in our galaxy.

Richard Conn Henry, a professor in the Henry A. Rowland Department of Physics and Astronomy at Johns Hopkins’ Zanvyl Krieger School of Arts and Sciences, is joining forces with Seth Shostak of the SETI Institute and Steven Kilston of the Henry Foundation Inc., a Silver Spring, Md., think tank, to search a swath of the sky known as the ecliptic plane. They propose to use new Allen Telescope Array, operated as a partnership between the SETI Institute in Mountain View, Calif., and the Radio Astronomy Laboratory at the University of California, Berkeley.

Comprising hundreds of specially produced small dishes that marry modern, miniaturized electronics and innovative technologies with computer processing, the ATA provides researchers with the capability to search for possible signals from technologically advanced civilizations elsewhere in our galaxy – if, in fact, such civilizations exist and are transmitting in this direction.

Employing this new equipment in a unique, targeted search for possible civilizations enhances the chances of finding one, in the same way that a search for a needle in a haystack is made easier if one knows at least approximately where the needle was dropped, said Henry, who is speaking about the proposal at the American Astronomical Society annual meeting in St. Louis.

According to the researchers, the critical place to look is in the ecliptic, a great circle around the sky that represents the plane of Earth's orbit. The sun, as viewed from Earth, appears annually to pass along this circle. Any civilization that lies within a fraction of a degree of the ecliptic could annually detect Earth passing in front of the sun. This ecliptic band comprises only about 3 percent of the sky.

“If those civilizations are out there – and we don’t know that they are – those that inhabit star systems that lie close to the plane of the Earth’s orbit around the sun will be the most motivated to send communications signals toward Earth," Henry said, "because those civilizations will surely have detected our annual transit across the face of the sun, telling them that Earth lies in a habitable zone, where liquid water is stable. Through spectroscopic analysis of our atmosphere, they will know that Earth likely bears life.

“Knowing where to look tremendously reduces the amount of radio telescope time we will need to conduct the search,” he said.

Most of the 100 billion stars in our Milky Way galaxy are located in the galactic plane, forming another great circle around the sky. The two great circles intersect near Taurus and Sagittarius, two constellations opposite each other in the Earth's sky – areas where the search will initially concentrate.

“The crucial implication is that this targeted search in a favored part of the sky -- the ecliptic stripe, if you will – may provide us with significantly better prospects for detecting extraterrestrials than has any previous search effort,” Kilston said.

Ray Villard of the Space Telescope Science Institute, who will join the team in its observations, said that in November 2001, STScI publicized Hubble Space Telescope observations of a transiting planet and “it occurred to me that alien civilizations along the ecliptic would likely be doing similar observations to Earth."

"Once they had determined Earth to be habitable, they might initiate sending signals,” Villard said.

Shostak of SETI notes that the Allen Telescope Array is ideal for the team’s plans to search the entire ecliptic over time, and not just the intersections of the ecliptic and galactic planes.

The team’s presentation at the AAS meeting also explores possible scenarios for the appearance of civilizations in our galaxy.

“These models are nothing but pure speculation. But hey … it is educational to explore possibilities,” Henry said. “We have no idea how many – if any – other civilizations there are in our galaxy. One critical factor is how long a civilization – for example, our own – remains in existence. If, as we dearly hope, the answer is many millions of years, then even if civilizations are fairly rare, those in our ecliptic plane will have learned of our existence. They will know that life exists on Earth and they will have the patience to beam easily detectable radio (or optical) signals in our direction, if necessary, for millions of years in the hope, now realized, that a technological civilization will appear on Earth.”

Lisa De Nike | newswise
Further information:
http://www.jhu.edu
http://henry.pha.jhu.edu/seti.html

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>