Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Hopes to Use New Technology to Search for ETs

06.06.2008
A team is briefing fellow scientists about plans to use new technology to take advantage of recent, promising ideas on where to search for extraterrestrial intelligence in our galaxy.

A Johns Hopkins astronomer is a member of a team briefing fellow scientists about plans to use new technology to take advantage of recent, promising ideas on where to search for possible extraterrestrial intelligence in our galaxy.

Richard Conn Henry, a professor in the Henry A. Rowland Department of Physics and Astronomy at Johns Hopkins’ Zanvyl Krieger School of Arts and Sciences, is joining forces with Seth Shostak of the SETI Institute and Steven Kilston of the Henry Foundation Inc., a Silver Spring, Md., think tank, to search a swath of the sky known as the ecliptic plane. They propose to use new Allen Telescope Array, operated as a partnership between the SETI Institute in Mountain View, Calif., and the Radio Astronomy Laboratory at the University of California, Berkeley.

Comprising hundreds of specially produced small dishes that marry modern, miniaturized electronics and innovative technologies with computer processing, the ATA provides researchers with the capability to search for possible signals from technologically advanced civilizations elsewhere in our galaxy – if, in fact, such civilizations exist and are transmitting in this direction.

Employing this new equipment in a unique, targeted search for possible civilizations enhances the chances of finding one, in the same way that a search for a needle in a haystack is made easier if one knows at least approximately where the needle was dropped, said Henry, who is speaking about the proposal at the American Astronomical Society annual meeting in St. Louis.

According to the researchers, the critical place to look is in the ecliptic, a great circle around the sky that represents the plane of Earth's orbit. The sun, as viewed from Earth, appears annually to pass along this circle. Any civilization that lies within a fraction of a degree of the ecliptic could annually detect Earth passing in front of the sun. This ecliptic band comprises only about 3 percent of the sky.

“If those civilizations are out there – and we don’t know that they are – those that inhabit star systems that lie close to the plane of the Earth’s orbit around the sun will be the most motivated to send communications signals toward Earth," Henry said, "because those civilizations will surely have detected our annual transit across the face of the sun, telling them that Earth lies in a habitable zone, where liquid water is stable. Through spectroscopic analysis of our atmosphere, they will know that Earth likely bears life.

“Knowing where to look tremendously reduces the amount of radio telescope time we will need to conduct the search,” he said.

Most of the 100 billion stars in our Milky Way galaxy are located in the galactic plane, forming another great circle around the sky. The two great circles intersect near Taurus and Sagittarius, two constellations opposite each other in the Earth's sky – areas where the search will initially concentrate.

“The crucial implication is that this targeted search in a favored part of the sky -- the ecliptic stripe, if you will – may provide us with significantly better prospects for detecting extraterrestrials than has any previous search effort,” Kilston said.

Ray Villard of the Space Telescope Science Institute, who will join the team in its observations, said that in November 2001, STScI publicized Hubble Space Telescope observations of a transiting planet and “it occurred to me that alien civilizations along the ecliptic would likely be doing similar observations to Earth."

"Once they had determined Earth to be habitable, they might initiate sending signals,” Villard said.

Shostak of SETI notes that the Allen Telescope Array is ideal for the team’s plans to search the entire ecliptic over time, and not just the intersections of the ecliptic and galactic planes.

The team’s presentation at the AAS meeting also explores possible scenarios for the appearance of civilizations in our galaxy.

“These models are nothing but pure speculation. But hey … it is educational to explore possibilities,” Henry said. “We have no idea how many – if any – other civilizations there are in our galaxy. One critical factor is how long a civilization – for example, our own – remains in existence. If, as we dearly hope, the answer is many millions of years, then even if civilizations are fairly rare, those in our ecliptic plane will have learned of our existence. They will know that life exists on Earth and they will have the patience to beam easily detectable radio (or optical) signals in our direction, if necessary, for millions of years in the hope, now realized, that a technological civilization will appear on Earth.”

Lisa De Nike | newswise
Further information:
http://www.jhu.edu
http://henry.pha.jhu.edu/seti.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>