Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The behemoth has a thick belt

28.05.2008
Astronomers resolve torus around star in another galaxy

Talk about a diet! By resolving, for the first time, features of an individual star in a neighbouring galaxy, ESO's VLT has allowed astronomers to determine that it weighs almost half of what was previously thought, thereby solving the mystery of its existence. The behemoth star is found to be surrounded by a massive and thick torus of gas and dust, and is most likely experiencing unstable, violent mass loss.

WOH G64 is a red supergiant star almost 2 000 times as large as our Sun and is located 163 000 light-years away in the Large Magellanic Cloud, one of the Milky Way's satellite galaxies.

"Previous estimates gave an initial mass of 40 times the mass of the Sun to WOH G64. But this was a real problem as it was way too cold, compared to what theoretical models predict for such a massive star. Its existence couldn't be explained," says Keiichi Ohnaka, who led the work on this object.

New observations, made with ESO's Very Large Telescope Interferometer, conclude that the gas and dust around the star is arranged in a thick ring, rather than a spherical shell, and the star is thus less hidden than had been assumed. This implies that the object is in fact half as luminous as previously thought, and thus, less massive. The astronomers infer that the star started its life with a mass of 25 solar masses. For such a star, the observed temperature is closer to what one would expect.

"Still, the characteristics of the star mean that it may be experiencing a very unstable phase accompanied by heavy mass loss," says co-author Markus Wittkowski from ESO. "We estimate that the belt of gas and dust that surrounds it contains between 3 and 9 solar masses, which means that the star has already lost between one tenth and a third of its initial mass."

To reach this conclusion, the team of astronomers used the MIDI instrument to combine the light collected by three pairs of 8.2-m Unit Telescopes of the VLT. This is the first time that MIDI has been used to study an individual star outside our Galaxy.

The observations allowed the astronomers to clearly resolve the star. Comparisons with models led them to conclude that the star is surrounded by a gigantic, thick torus, expanding from about 15 stellar radii (or 120 times the distance between the Earth and the Sun - 120 AU!) to more than 250 stellar radii (or 30 000 AU!).

"Everything is huge about this system. The star itself is so big that it would fill almost all the space between the Sun and the orbit of Saturn," says Ohnaka. "And the torus that surrounds it is perhaps a light-year across! Still, because it is so far away, only the power of interferometry with the VLT could give us a glimpse on this object. "

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-15-08.html

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>