Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Beating the codebreakers with quantum cryptography

Quantum cryptography may be essentially solved, but getting the funky physics to work on disciplined computer networks is a whole new headache.

Cryptography is an arms race, but the finish line may be fast approaching. Up to now, each time the codemakers made a better mousetrap, codebreakers breed a better mouse. But quantum cryptography theoretically could outpace the codebreakers and win the race. Forever.

Already the current state of the art in classical encryption, 128-bit RSA, can be cracked with enough raw, brute force computing power available to organisations like the US National Security Agency. And the advent of quantum computing will make it even simpler. The gold standard for secret communication will be truly dead.

Quantum cryptography solves the problem, and it will overcome the remaining stumbling block, the distribution of the code key to the right person, by using quantum key distribution (QKD).

Modern cryptography relies on the use of digital ‘keys’ to encrypt data before sending it over a network, and to decrypt it at the other end. The receiver must have a version of the key code used by the sender so as to be able to decrypt and access the data.

QKD offers a theoretically uncrackable code, one that is easily distributed and works in a transparent manner. Even better, the nature of quantum mechanics means that if any eavesdropper – called Eve in the argot of cryptographers – tries to snoop on a message the sender and receiver will both know.

That ability is due to the use of the Heisenberg Uncertainty Principle, which sits at the heart of quantum mechanics. The principle rests on the theory that the act of measuring a quantum state changes that state. It is like children with a guilty secret. As soon as you look at them their faces morph plausibly into ‘Who, me?’

The practical upshot for cryptography is that the sender and receiver can verify the security of the transmission. They will know if the state of the quanta has changed, whether the key has been read en route. If so, they can abandon the key they are using and generate a new one.

QKD made its real-world debut in the canton of Geneva for use in the electronic voting system used in the Swiss general election last year. The system guaranteed that the poll was secure. But, more importantly perhaps, it also ensured that no vote was lost in transmission, because the uncertainly principle established there was no change to the transmitted data.

The end of the beginning
The canton election was a demonstration of the work done by researchers for the SECOQC project, an EU-funded effort to develop an international network for secure communication based on QKD.

The test of the technology demonstrated that QKD worked for point-to-point communications between two parties. But the demonstration was just the beginning of the SECOQC’s overall goal.

“We want to establish a network wide quantum encryption, because it will mean it works over much longer distances,” explains Christian Monyk, co-ordinator of the SECOQC project and head of the quantum-technologies unit at the Austrian Research Centres. “Network quantum encryption and QKD mean that many parties can communicate securely, not just two. Finally, it also means quantum encryption could be deployed on a very large scale, for the insurance and banking sectors, for example.”

Moving the system from point-to-point communications to a network is an order of magnitude more difficult.

“The quantum science for cryptography and key distribution is essentially solved, and it is a great result,” Monyk says. “But getting that system to work across a network is much more difficult. You have to deal with different protocols and network architectures, develop new nodes and new interfaces with the quantum devices to get it to a large-scale, long distance, real-world application.”

Working at a distance
Getting the system to work over long distances is also a challenge because QKD requires hi-fidelity data transmission over high-quality physical networks like non-zero dispersion shifted fibre optics.

“It was not one big problem, it was many, many small computing science and engineering problems,” says Monyk. “We had to work with a large number of technologies. And we have to certify it to experts.”

But SECOQC’s researchers believe they have solved the network issue. The researchers are currently putting the final touches to a demonstration of the technology to be held this October in Vienna, Austria. Industry has shown great interest in the technology. Still the technology is not quite ready for prime time.

“From a technical point of view, the technology will be ready in one or two years,” says Monyk.

And that means that the race will be won, finally, by the codemakers.

Ahmed ElAmin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>