Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating the codebreakers with quantum cryptography

29.04.2008
Quantum cryptography may be essentially solved, but getting the funky physics to work on disciplined computer networks is a whole new headache.

Cryptography is an arms race, but the finish line may be fast approaching. Up to now, each time the codemakers made a better mousetrap, codebreakers breed a better mouse. But quantum cryptography theoretically could outpace the codebreakers and win the race. Forever.

Already the current state of the art in classical encryption, 128-bit RSA, can be cracked with enough raw, brute force computing power available to organisations like the US National Security Agency. And the advent of quantum computing will make it even simpler. The gold standard for secret communication will be truly dead.

Quantum cryptography solves the problem, and it will overcome the remaining stumbling block, the distribution of the code key to the right person, by using quantum key distribution (QKD).

Modern cryptography relies on the use of digital ‘keys’ to encrypt data before sending it over a network, and to decrypt it at the other end. The receiver must have a version of the key code used by the sender so as to be able to decrypt and access the data.

QKD offers a theoretically uncrackable code, one that is easily distributed and works in a transparent manner. Even better, the nature of quantum mechanics means that if any eavesdropper – called Eve in the argot of cryptographers – tries to snoop on a message the sender and receiver will both know.

That ability is due to the use of the Heisenberg Uncertainty Principle, which sits at the heart of quantum mechanics. The principle rests on the theory that the act of measuring a quantum state changes that state. It is like children with a guilty secret. As soon as you look at them their faces morph plausibly into ‘Who, me?’

The practical upshot for cryptography is that the sender and receiver can verify the security of the transmission. They will know if the state of the quanta has changed, whether the key has been read en route. If so, they can abandon the key they are using and generate a new one.

QKD made its real-world debut in the canton of Geneva for use in the electronic voting system used in the Swiss general election last year. The system guaranteed that the poll was secure. But, more importantly perhaps, it also ensured that no vote was lost in transmission, because the uncertainly principle established there was no change to the transmitted data.

The end of the beginning
The canton election was a demonstration of the work done by researchers for the SECOQC project, an EU-funded effort to develop an international network for secure communication based on QKD.

The test of the technology demonstrated that QKD worked for point-to-point communications between two parties. But the demonstration was just the beginning of the SECOQC’s overall goal.

“We want to establish a network wide quantum encryption, because it will mean it works over much longer distances,” explains Christian Monyk, co-ordinator of the SECOQC project and head of the quantum-technologies unit at the Austrian Research Centres. “Network quantum encryption and QKD mean that many parties can communicate securely, not just two. Finally, it also means quantum encryption could be deployed on a very large scale, for the insurance and banking sectors, for example.”

Moving the system from point-to-point communications to a network is an order of magnitude more difficult.

“The quantum science for cryptography and key distribution is essentially solved, and it is a great result,” Monyk says. “But getting that system to work across a network is much more difficult. You have to deal with different protocols and network architectures, develop new nodes and new interfaces with the quantum devices to get it to a large-scale, long distance, real-world application.”

Working at a distance
Getting the system to work over long distances is also a challenge because QKD requires hi-fidelity data transmission over high-quality physical networks like non-zero dispersion shifted fibre optics.

“It was not one big problem, it was many, many small computing science and engineering problems,” says Monyk. “We had to work with a large number of technologies. And we have to certify it to experts.”

But SECOQC’s researchers believe they have solved the network issue. The researchers are currently putting the final touches to a demonstration of the technology to be held this October in Vienna, Austria. Industry has shown great interest in the technology. Still the technology is not quite ready for prime time.

“From a technical point of view, the technology will be ready in one or two years,” says Monyk.

And that means that the race will be won, finally, by the codemakers.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89694

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>