Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Major boost for Physics in the South East

A consortium of six universities led by the University of Surrey has won a £12.5m grant from the Higher Education Funding Council for England (HEFCE) to promote the sustained excellence of physics in the South East.

The South East Physics Network (SEPNET) will have a collaborative Graduate School providing advanced research training for PhD students across the region and offering innovative MSc programmes. The consortium will also support joint research themes in astrophysics, particle physics, condensed matter physics and radiation and detector instrumentation.

A co-ordinated outreach programme to stimulate interest and aspiration among pupils in the region’s schools will draw on the resources of the six departments involved, and the consortium will also mount a knowledge transfer programme which will include a one-stop shop for regional employers.

Announcing the award at the HEFCE annual conference on 7 April, Professor David Eastwood, the Chief Executive of HEFCE, said that the six departments had been facing serious challenges if they continued to work in isolation. ‘The key to unlocking their potential has been to facilitate and support their collaboration so that they can secure greater levels of activities and leverage additional funds. By working in collaboration they can raise the quality of teaching and research, building on the strengths of the individual departments, and broaden the contribution of physics both through research and the development of highly skilled students.’ (See note 1).

Welcoming the announcement, Professor John Turner, Deputy Vice-Chancellor of the University of Surrey, who convened the team which prepared the bid, said that the key to success was the sense of common purpose which had grown up among the physics departments in the region, and their commitment to making physics contribute to prosperity and well-being of the region: ‘The SEPNET collaboration is a pragmatic, farsighted and joined-up response to the challenges which face physics in the UK. With this help from HEFCE, our physics colleagues, working together, will be able to advance leading edge research but also bring on new generations of young physicists. With support from large regional employers in high tech sectors such as QinetiQ, IBM, WS Atkins, and the National Physical Laboratory, and a network of SMEs, they will be able to address the needs of industry for new science and for advanced training in high-level skills.’

Professor Peter McDonald, Head of Physics at Surrey, said: 'Our department has a strong tradition of combining pure research with applications, in such areas as nuclear physics, condensed matter, and radiation and detector instrumentation. SEPNET will enable us to work with colleagues across the region to strengthen further our industrial links and our portfolio of Master’s programmes.'

Stuart Miller | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>