Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major boost for Physics in the South East

08.04.2008
A consortium of six universities led by the University of Surrey has won a £12.5m grant from the Higher Education Funding Council for England (HEFCE) to promote the sustained excellence of physics in the South East.

The South East Physics Network (SEPNET) will have a collaborative Graduate School providing advanced research training for PhD students across the region and offering innovative MSc programmes. The consortium will also support joint research themes in astrophysics, particle physics, condensed matter physics and radiation and detector instrumentation.

A co-ordinated outreach programme to stimulate interest and aspiration among pupils in the region’s schools will draw on the resources of the six departments involved, and the consortium will also mount a knowledge transfer programme which will include a one-stop shop for regional employers.

Announcing the award at the HEFCE annual conference on 7 April, Professor David Eastwood, the Chief Executive of HEFCE, said that the six departments had been facing serious challenges if they continued to work in isolation. ‘The key to unlocking their potential has been to facilitate and support their collaboration so that they can secure greater levels of activities and leverage additional funds. By working in collaboration they can raise the quality of teaching and research, building on the strengths of the individual departments, and broaden the contribution of physics both through research and the development of highly skilled students.’ (See note 1).

Welcoming the announcement, Professor John Turner, Deputy Vice-Chancellor of the University of Surrey, who convened the team which prepared the bid, said that the key to success was the sense of common purpose which had grown up among the physics departments in the region, and their commitment to making physics contribute to prosperity and well-being of the region: ‘The SEPNET collaboration is a pragmatic, farsighted and joined-up response to the challenges which face physics in the UK. With this help from HEFCE, our physics colleagues, working together, will be able to advance leading edge research but also bring on new generations of young physicists. With support from large regional employers in high tech sectors such as QinetiQ, IBM, WS Atkins, and the National Physical Laboratory, and a network of SMEs, they will be able to address the needs of industry for new science and for advanced training in high-level skills.’

Professor Peter McDonald, Head of Physics at Surrey, said: 'Our department has a strong tradition of combining pure research with applications, in such areas as nuclear physics, condensed matter, and radiation and detector instrumentation. SEPNET will enable us to work with colleagues across the region to strengthen further our industrial links and our portfolio of Master’s programmes.'

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk
http://www.hefce.ac.uk/news/hefce/2008/sepnet.htm

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>