Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2,500 researchers, 1 supermachine, 1 new snapshot of the universe

02.04.2008
Université de Montréal physicist Claude Leroy a key figure among international team that designed world's biggest particle physics detector

Deep in the bowels of the earth –100 metres below ground in Geneva, Switzerland – lies a supermachine of 27 km circumference called the Large Hadron Collider (LHC) that has been built to unlock the mysteries of the universe.

Claude Leroy, a Université de Montréal physics professor, was among the 2,500 scientists from 37 countries recruited to help design, test and build the ATLAS detector at the supermachine that will provide a new perspective into what occurred at the time of the Big Bang and immediately after. Designed for CERN, the European Organization for Nuclear Research, the ATLAS detector, the largest among the four detectors operating at the supermachine in question, is 46 metres in length, 25 metres in height and 7000 tonnes in weight – or the size of three football fields.

Prof. Leroy was responsible for the radiation and irradiation studies conducted to ensure the ATLAS detector will run smoothly. His investigations also led to the creation of MPX, a small device attached throughout the supermachine and ATLAS that uses pixel silicon detectors to perform real-time measurements of the spectral characteristics and composition of radiation inside and around the ATLAS detector. The small devices essentially capture images of what’s inside the detector and its environment, such neutrons and photons, a world-first.

He also participated in physics studies that targeted the production of heavy leptons, excited leptons, quarks and supersymmetry, in particular the study of neutralinos as dark matter candidates. Prof. Leroy’s experiments were critical in ensuring the viability of the ATLAS detector at the core of the supermachine, which is the world’s biggest particles physics detector. Indeed, before the LHC can be started up, some 38,000 tons of equipment of the supermachine must be cooled down to minus 456 degrees Fahrenheit for the magnets to operate in a superconducting state. This will be achieved by using liquid helium for magnet. Parts of the ATLAS calorimeters use liquid argon cooled at minus 312 degrees Fahrenheit. “The radiation field produced by the operation of the machine and ATLAS is stronger than a nuclear reactor, so it is vital that its design master all aspects of physics,” said Prof. Leroy.

Supermachine’s Big Bang

The LHC will recreate conditions akin to the Big Bang – which many scientists believe gave birth to the universe – by colliding two beams of particles at close to the speed of light. Since it is estimated that only 4 percent of the universe has been charted, the supermachine will help answer the following questions in physics when it is turned on in summer 2008:

What is the unknown 96 percent of the universe made of"
Why do particles have mass"
Why does nature prefer matter over antimatter"
What lies beyond Earth’s dimension"
More on Claude Leroy:
Claude Leroy is a physics professor and head of Université de Montréal‘s Particle Physics Laboratory. He specializes in instrumentation and experimental particle physics, particularly rare decays of muons (heavy electrons) and pions, neutron physics, hadron collisions and applications of semiconductors in particle physics experiments. He collaborates with the Canada-based TRIUMF Laboratory and the physics of high energy collisions at the Swiss-based CERN Laboratory. Leroy is member of the board of the Institute of Experimental and Applied Physics of the Czech Technical University in Prague and Vancouver-based TRIUMF Laboratory. He is Fellow of the Royal Society of Canada, CERN Scientific Associate and Honorary Professor of the National University of Peru. He is fluent in several languages and is passionate about Chinese culture and history.

Claude Leroy | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>