Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2,500 researchers, 1 supermachine, 1 new snapshot of the universe

02.04.2008
Université de Montréal physicist Claude Leroy a key figure among international team that designed world's biggest particle physics detector

Deep in the bowels of the earth –100 metres below ground in Geneva, Switzerland – lies a supermachine of 27 km circumference called the Large Hadron Collider (LHC) that has been built to unlock the mysteries of the universe.

Claude Leroy, a Université de Montréal physics professor, was among the 2,500 scientists from 37 countries recruited to help design, test and build the ATLAS detector at the supermachine that will provide a new perspective into what occurred at the time of the Big Bang and immediately after. Designed for CERN, the European Organization for Nuclear Research, the ATLAS detector, the largest among the four detectors operating at the supermachine in question, is 46 metres in length, 25 metres in height and 7000 tonnes in weight – or the size of three football fields.

Prof. Leroy was responsible for the radiation and irradiation studies conducted to ensure the ATLAS detector will run smoothly. His investigations also led to the creation of MPX, a small device attached throughout the supermachine and ATLAS that uses pixel silicon detectors to perform real-time measurements of the spectral characteristics and composition of radiation inside and around the ATLAS detector. The small devices essentially capture images of what’s inside the detector and its environment, such neutrons and photons, a world-first.

He also participated in physics studies that targeted the production of heavy leptons, excited leptons, quarks and supersymmetry, in particular the study of neutralinos as dark matter candidates. Prof. Leroy’s experiments were critical in ensuring the viability of the ATLAS detector at the core of the supermachine, which is the world’s biggest particles physics detector. Indeed, before the LHC can be started up, some 38,000 tons of equipment of the supermachine must be cooled down to minus 456 degrees Fahrenheit for the magnets to operate in a superconducting state. This will be achieved by using liquid helium for magnet. Parts of the ATLAS calorimeters use liquid argon cooled at minus 312 degrees Fahrenheit. “The radiation field produced by the operation of the machine and ATLAS is stronger than a nuclear reactor, so it is vital that its design master all aspects of physics,” said Prof. Leroy.

Supermachine’s Big Bang

The LHC will recreate conditions akin to the Big Bang – which many scientists believe gave birth to the universe – by colliding two beams of particles at close to the speed of light. Since it is estimated that only 4 percent of the universe has been charted, the supermachine will help answer the following questions in physics when it is turned on in summer 2008:

What is the unknown 96 percent of the universe made of"
Why do particles have mass"
Why does nature prefer matter over antimatter"
What lies beyond Earth’s dimension"
More on Claude Leroy:
Claude Leroy is a physics professor and head of Université de Montréal‘s Particle Physics Laboratory. He specializes in instrumentation and experimental particle physics, particularly rare decays of muons (heavy electrons) and pions, neutron physics, hadron collisions and applications of semiconductors in particle physics experiments. He collaborates with the Canada-based TRIUMF Laboratory and the physics of high energy collisions at the Swiss-based CERN Laboratory. Leroy is member of the board of the Institute of Experimental and Applied Physics of the Czech Technical University in Prague and Vancouver-based TRIUMF Laboratory. He is Fellow of the Royal Society of Canada, CERN Scientific Associate and Honorary Professor of the National University of Peru. He is fluent in several languages and is passionate about Chinese culture and history.

Claude Leroy | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>