Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


2,500 researchers, 1 supermachine, 1 new snapshot of the universe

Université de Montréal physicist Claude Leroy a key figure among international team that designed world's biggest particle physics detector

Deep in the bowels of the earth –100 metres below ground in Geneva, Switzerland – lies a supermachine of 27 km circumference called the Large Hadron Collider (LHC) that has been built to unlock the mysteries of the universe.

Claude Leroy, a Université de Montréal physics professor, was among the 2,500 scientists from 37 countries recruited to help design, test and build the ATLAS detector at the supermachine that will provide a new perspective into what occurred at the time of the Big Bang and immediately after. Designed for CERN, the European Organization for Nuclear Research, the ATLAS detector, the largest among the four detectors operating at the supermachine in question, is 46 metres in length, 25 metres in height and 7000 tonnes in weight – or the size of three football fields.

Prof. Leroy was responsible for the radiation and irradiation studies conducted to ensure the ATLAS detector will run smoothly. His investigations also led to the creation of MPX, a small device attached throughout the supermachine and ATLAS that uses pixel silicon detectors to perform real-time measurements of the spectral characteristics and composition of radiation inside and around the ATLAS detector. The small devices essentially capture images of what’s inside the detector and its environment, such neutrons and photons, a world-first.

He also participated in physics studies that targeted the production of heavy leptons, excited leptons, quarks and supersymmetry, in particular the study of neutralinos as dark matter candidates. Prof. Leroy’s experiments were critical in ensuring the viability of the ATLAS detector at the core of the supermachine, which is the world’s biggest particles physics detector. Indeed, before the LHC can be started up, some 38,000 tons of equipment of the supermachine must be cooled down to minus 456 degrees Fahrenheit for the magnets to operate in a superconducting state. This will be achieved by using liquid helium for magnet. Parts of the ATLAS calorimeters use liquid argon cooled at minus 312 degrees Fahrenheit. “The radiation field produced by the operation of the machine and ATLAS is stronger than a nuclear reactor, so it is vital that its design master all aspects of physics,” said Prof. Leroy.

Supermachine’s Big Bang

The LHC will recreate conditions akin to the Big Bang – which many scientists believe gave birth to the universe – by colliding two beams of particles at close to the speed of light. Since it is estimated that only 4 percent of the universe has been charted, the supermachine will help answer the following questions in physics when it is turned on in summer 2008:

What is the unknown 96 percent of the universe made of"
Why do particles have mass"
Why does nature prefer matter over antimatter"
What lies beyond Earth’s dimension"
More on Claude Leroy:
Claude Leroy is a physics professor and head of Université de Montréal‘s Particle Physics Laboratory. He specializes in instrumentation and experimental particle physics, particularly rare decays of muons (heavy electrons) and pions, neutron physics, hadron collisions and applications of semiconductors in particle physics experiments. He collaborates with the Canada-based TRIUMF Laboratory and the physics of high energy collisions at the Swiss-based CERN Laboratory. Leroy is member of the board of the Institute of Experimental and Applied Physics of the Czech Technical University in Prague and Vancouver-based TRIUMF Laboratory. He is Fellow of the Royal Society of Canada, CERN Scientific Associate and Honorary Professor of the National University of Peru. He is fluent in several languages and is passionate about Chinese culture and history.

Claude Leroy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>