Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Planet in Progress?

28.03.2008
Astrophysicists observe a circumstellar disk with telltale signs of planet formation

Scientists are one step closer to understanding how new planets form, thanks to research funded by the National Science Foundation (NSF) and carried out by a team of astrophysicists at the American Museum of Natural History.

Ben R. Oppenheimer, assistant curator in the museum's Department of Astrophysics, and his colleagues have used the Lyot Project coronograph attached to a U.S. Air Force telescope on Maui, Hawaii, to construct an image of material that seems to be coalescing into a body from the gas and dust cloud surrounding AB Aurigae, a well-studied star. The body is either a planet or a brown dwarf--something with mass between a star or a planet. Brown dwarfs have been found orbiting stars since a team that included Oppenheimer first discovered one in 1995.

The research results, accepted for publication in June's Astrophysical Journal, represent a significant step toward direct imaging and the study of exoplanets, which orbit stars other than the Sun, and may advance theories of planet and brown dwarf formations.

"The research builds upon Dr. Openheimer's past successes in the detection of a brown dwarf and several debris disks and take advantage of an improved, deformable, secondary mirror which was installed at the telescope facility in 2006," said NSF Program Manager Julian Christou. "The image produced speaks directly to the biggest, unresolved question of planet formation--how the thick disk of debris and gas evolves into a thin, dusty region with planets." Young stars generally have a lot of material caught in their gravitational pull--material that organizes itself into a disc over time. Astronomers believe planets form in this disc.

The image produced by Oppenheimer's team shows a horseshoe-shaped void in the disc with a bright point appearing as a dot in the void.

"The deficit of material could be due to a planet forming and sucking material onto it, coalescing into a small point in the image and clearing material in the immediate surroundings," Oppenheimer said. "It seems to be indicative of the formation of a small body, either a planet or a brown dwarf."

AB Aurigae is well-studied because it is young, between one and three million years old, and can therefore provide information on how stars and objects that orbit them form. One unresolved question about planet formation is how the initial thick, gas-rich disk of debris evolves into a thin, dusty region with planets. The observation of stars slightly older than AB Aurigae shows that at some point the gas is removed, but no one knows how this happens. AB Aurigae could be in an intermediate stage, where the gas is being cleared out from the center, leaving mainly dust behind.

"More detailed observations of this star can help solve questions about how some planets form, and can possibly test competing theories," says Oppenheimer. And if this object is a brown dwarf, our understanding of them must be revamped as brown dwarfs are not believed to form in circumstellar materials, Oppenheimer said.

Diane Banegas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>