Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Very Large Array Retooling for 21st-Century Science

20.02.2008
An international project to make the world's most productive ground-based telescope 10 times more capable has reached its halfway mark and is on schedule to provide astronomers with an extremely powerful new tool for exploring the Universe.

The National Science Foundation's Very Large Array (VLA) radio telescope now has half of its giant, 230-ton dish antennas converted to use new, state-of-the-art digital electronics to replace analog equipment that has served since the facility's construction during the 1970s.

"We're taking a facility that has made landmark discoveries in astronomy for three decades and making it 10 times more powerful, at a cost that's a fraction of its total value, by replacing outdated technology with modern equipment," said Mark McKinnon, project manager for the Expanded VLA (EVLA). Rick Perley, EVLA project scientist, added: "When completed in 2012, the EVLA will be 10 times more sensitive, cover more frequencies, and provide far greater analysis capabilities than the current VLA. In addition, it will be much simpler to use, making its power available to a wider range of scientists."

The EVLA will give scientists new power and flexibility to meet the numerous challenges of 21st-Century astrophysics. The increased sensitivity will reveal the earliest epochs of galaxy formation, back to within a billion years of the Big Bang, or 93 percent of the look-back time to the beginning of the Universe. It will have the resolution to peer deep into the dustiest star-forming clouds, imaging protoplanetary disks around young stars on scales approaching that of the formation of terrestrial planets. The EVLA will provide unique capabilities to study magnetic fields in the Universe, to image regions near massive black holes, and to systematically track changes in transient objects such as supernovae and fast-moving jets from massive, compact objects such as neutron stars and black holes.

Authorized by Congress in 1972, the VLA was constructed during the 1970s and dedicated in 1980. Astronomers began using it for research even before its completion. To date, nearly 2,500 scientists from around the world have used the VLA for more than 13,000 observing projects. More than 200 Ph.D dissertations have been based on data obtained from VLA observations. The VLA's discoveries have ranged from finding water ice on Mercury, the closest planet to the Sun, to revealing details of the complex region surrounding the black hole at the core of our own Milky Way Galaxy, to providing surprising evidence that a distant galaxy had already formed and produced stars prolifically less than a billion years after the Big Bang.

Half, or fourteen, of the VLA's inventory of 28, 25-meter-diameter dish antennas now have been converted to the new, digital configuration. The antennas collect faint radio waves emitted by celestial objects. Data from all the antennas are brought to a central, special-purpose computing machine, called a correlator, to be combined into a form that allows scientists to produce detailed, high-quality images of the astronomical objects under investigation.

This entire system for collecting, transmitting and analyzing the cosmic radio signals is being replaced for the EVLA. New, more sensitive radio receivers will cover the entire frequency range of 1-50 GHz. A 1970s-era waveguide system gives way to a modern, fiber-optic system that dramatically increases the amount of data that can be delivered from the antenna to the correlator. Finally, a new, state-of-the-art correlator -- a special-purpose supercomputer -- is being built by Canadian scientists and engineers. This correlator will easily handle the increased data flow, offers much greater observing flexibility, and provides vastly expanded capabilities for analyzing the data to gain scientific insight about the astronomical objects.

"We're leapfrogging several generations of technological progress to make the EVLA a completely modern, 21st-Century scientific facility," said Fred K.Y. Lo, NRAO Director.

Construction work on the EVLA began in 2001. The project costs $93.75 million in U.S. dollars -- $58.7 million in new direct funding from the National Science Foundation, $1.75 million from Mexico, $17 million from Canada in the form of the new correlator, and $16.3 million in the form of labor from existing staff at the NRAO. The current value of the VLA infrastructure on which the EVLA is being built is estimated at $300 million.

"The EVLA project is giving us 10 times the VLA's capability at one-third the cost of the current facility," McKinnon pointed out.

To provide the improved scientific capabilities, the EVLA will boast some impressive technical feats. For example, the fiber-optic data transmission system will carry as much information instantaneously as the entire current U.S. internet. The EVLA receiving system will be so sensitive that it could detect the weak radio transmission from a cell phone at the distance of Jupiter -- half a billion miles away.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>