Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Very Large Array Retooling for 21st-Century Science

20.02.2008
An international project to make the world's most productive ground-based telescope 10 times more capable has reached its halfway mark and is on schedule to provide astronomers with an extremely powerful new tool for exploring the Universe.

The National Science Foundation's Very Large Array (VLA) radio telescope now has half of its giant, 230-ton dish antennas converted to use new, state-of-the-art digital electronics to replace analog equipment that has served since the facility's construction during the 1970s.

"We're taking a facility that has made landmark discoveries in astronomy for three decades and making it 10 times more powerful, at a cost that's a fraction of its total value, by replacing outdated technology with modern equipment," said Mark McKinnon, project manager for the Expanded VLA (EVLA). Rick Perley, EVLA project scientist, added: "When completed in 2012, the EVLA will be 10 times more sensitive, cover more frequencies, and provide far greater analysis capabilities than the current VLA. In addition, it will be much simpler to use, making its power available to a wider range of scientists."

The EVLA will give scientists new power and flexibility to meet the numerous challenges of 21st-Century astrophysics. The increased sensitivity will reveal the earliest epochs of galaxy formation, back to within a billion years of the Big Bang, or 93 percent of the look-back time to the beginning of the Universe. It will have the resolution to peer deep into the dustiest star-forming clouds, imaging protoplanetary disks around young stars on scales approaching that of the formation of terrestrial planets. The EVLA will provide unique capabilities to study magnetic fields in the Universe, to image regions near massive black holes, and to systematically track changes in transient objects such as supernovae and fast-moving jets from massive, compact objects such as neutron stars and black holes.

Authorized by Congress in 1972, the VLA was constructed during the 1970s and dedicated in 1980. Astronomers began using it for research even before its completion. To date, nearly 2,500 scientists from around the world have used the VLA for more than 13,000 observing projects. More than 200 Ph.D dissertations have been based on data obtained from VLA observations. The VLA's discoveries have ranged from finding water ice on Mercury, the closest planet to the Sun, to revealing details of the complex region surrounding the black hole at the core of our own Milky Way Galaxy, to providing surprising evidence that a distant galaxy had already formed and produced stars prolifically less than a billion years after the Big Bang.

Half, or fourteen, of the VLA's inventory of 28, 25-meter-diameter dish antennas now have been converted to the new, digital configuration. The antennas collect faint radio waves emitted by celestial objects. Data from all the antennas are brought to a central, special-purpose computing machine, called a correlator, to be combined into a form that allows scientists to produce detailed, high-quality images of the astronomical objects under investigation.

This entire system for collecting, transmitting and analyzing the cosmic radio signals is being replaced for the EVLA. New, more sensitive radio receivers will cover the entire frequency range of 1-50 GHz. A 1970s-era waveguide system gives way to a modern, fiber-optic system that dramatically increases the amount of data that can be delivered from the antenna to the correlator. Finally, a new, state-of-the-art correlator -- a special-purpose supercomputer -- is being built by Canadian scientists and engineers. This correlator will easily handle the increased data flow, offers much greater observing flexibility, and provides vastly expanded capabilities for analyzing the data to gain scientific insight about the astronomical objects.

"We're leapfrogging several generations of technological progress to make the EVLA a completely modern, 21st-Century scientific facility," said Fred K.Y. Lo, NRAO Director.

Construction work on the EVLA began in 2001. The project costs $93.75 million in U.S. dollars -- $58.7 million in new direct funding from the National Science Foundation, $1.75 million from Mexico, $17 million from Canada in the form of the new correlator, and $16.3 million in the form of labor from existing staff at the NRAO. The current value of the VLA infrastructure on which the EVLA is being built is estimated at $300 million.

"The EVLA project is giving us 10 times the VLA's capability at one-third the cost of the current facility," McKinnon pointed out.

To provide the improved scientific capabilities, the EVLA will boast some impressive technical feats. For example, the fiber-optic data transmission system will carry as much information instantaneously as the entire current U.S. internet. The EVLA receiving system will be so sensitive that it could detect the weak radio transmission from a cell phone at the distance of Jupiter -- half a billion miles away.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>