Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Take your classroom into space

15.02.2008
With Europe's Columbus laboratory safely attached to the International Space Station, this is a good time to come up with new ideas for experiments that can be carried out onboard the station to demonstrate the effects of weightlessness to young students.

The International Space Station (ISS), the largest international space project of all time, orbits the Earth at an altitude of 400 km where the effects of the Earth’s gravitational field are effectively removed. This provides a unique location in which to carry out experiments in a weightless environment.

ESA invites European educators to come up with ideas that use this unique aspect of the ISS to illustrate to students the effects of weightlessness. Participation is open to primary and secondary school teachers, and to educators such as those involved in science education at a museum, a teacher training college or an educational organisation.

Call for Education Ideas

Proposals should be written in English and describe a scientific demonstration that behaves differently in the weightless environment of the ISS than on Earth. Entries should clearly identify the objectives, the expected results and the materials required to carry out the experiment, and should be designed for either primary or secondary level students.

To participate in the Call for Education Ideas entries should be submitted in English using the application form downloadable at http://esamultimedia.esa.int/docs/edu/form.doc and arrive at ESA by 30 May 2008. ESA regrets that entries can only be accepted from participants who are a national of one or more ESA Member State, i.e. Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

Prize for best proposals

A team of ESA experts will select the 20 best proposals and the top ten entries will be announced on this website on 16 June 2008. Each of the ten will receive €500, a package of ESA education material and a kit to make a scale model of the ISS. In recognition of their effort, the ten runners up will also be sent a scale model ISS kit.

Selection criteria

In July work will commence on preparing some of the best experiments for flight to the ISS where an ESA astronaut will carry out the experiments. Students across Europe will be given a unique opportunity to witness the 'classroom in space', and hopefully to perform simultaneously the experiment in their own classroom.

Proposals will be assessed using the following criteria:

relevance to weightlessness: the experiment should be a powerful illustration of the nature or effect of weightlessness

relevance to the curriculum: the topic should be relevant to the school curriculum

interdisciplinary: topics that relate to more than one discipline will be an asset

originality: proposals should show an original and novel approach to teaching

technical implementation: delivery to the ISS imposes limitations on mass and weight (no more than 2 kg) and it must be technically possible to carry out the experiment onboard the ISS

In addition, preference will be given to experiments that can be performed both onboard the ISS and in the classroom, as this is a very successful way to illustrate the effect of weightlessness.

ISS education team | alfa
Further information:
http://www.esa.int/esaHS/SEMLGRUHJCF_education_0.html

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>