Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black hole dynamo may be cosmos’ ultimate electricity generator

04.06.2002


Researchers at the U.S. Department of Energy’s Los Alamos National Laboratory believe that magnetic field lines extending a few million light years from galaxies into space may be the result of incredibly efficient energy-producing dynamos within black holes that are somewhat analogous to an electric motor. Los Alamos researchers Philipp Kronberg, Quentin Dufton, Stirling Colgate and Hui Li today discussed this finding at the American Astronomical Society meeting in Albuquerque, N.M.



By interpreting radio waves emanating from the gigantic magnetic fields, the researchers were able to create pictures of the fields as they extended from an object believed to be a black hole at the center of a galaxy out into regions of intergalactic space. Because the class of galaxies they studied are isolated from other intergalactic objects and gas - which could warp, distort or compress the fields - the fields extend a distance of up to ten million light years, or about six times 1019 miles.

The energy in these huge magnetic fields is comparable to that released into space as light, X-rays and gamma rays. In other words, the black hole energy is being efficiently converted into magnetic fields. The mechanism is not yet fully understood, but Kronberg and his colleagues believe a black hole accretion disk could be acting similarly to an electric motor.


Colgate and Los Alamos colleagues Vladimir Pariev and John Finn have developed a model to perhaps explain what is happening. They believe that the naturally magnetized accretion disk rotating around a black hole is punctured by clouds of stars in the vicinity of the black hole, like bullet holes in a flywheel. This, in turn, leads nonlinearly to a system similar to an electric generator that gives rise to a rotating, but invisible magnetic helix.

In this way, huge amounts of energy are carried out and away from the center of a galaxy as a set of twisted magnetic field lines that eventually appear via radio waves from luminous cloud formations on opposite sides of the galaxy.

The Los Alamos researchers are calculating methods by which enormous amounts of expelled magnetic energy are converted into heat - manifested in the form of a relativistic gas of cosmic rays that create radio energy that can be detected by radio telescopes such as the Very Large Array. Although the exact mechanism is still a mystery, the Los Alamos researchers believe that a sudden reconnection or fusing of the magnetic field lines creates and accelerates the cosmic rays.

The researchers still don’t understand why this fast magnetic field reconnection occurs. But understanding the mechanism could have important applications here on Earth such as creating a system of magnetic confinement for a fusion energy reactor.

The Los Alamos research is supported by the Laboratory Directed Research and Development Program and the Institute of Geophysics and Planetary Physics. The Natural Sciences and Engineering Research Council of Canada also provided support.

Los Alamos recently joined Southwest Universities consortium, which is hoping to build a very low frequency radio telescope called "LOFAR" in New Mexico or West Texas. The new telescope will be an excellent instrument for detecting hidden magnetic energy of the type the Los Alamos research team is interested in studying.


###
Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.

James Rickman | EurekAlert
Further information:
http://www.lanl.gov/external/news/releases

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>