Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black hole dynamo may be cosmos’ ultimate electricity generator

04.06.2002


Researchers at the U.S. Department of Energy’s Los Alamos National Laboratory believe that magnetic field lines extending a few million light years from galaxies into space may be the result of incredibly efficient energy-producing dynamos within black holes that are somewhat analogous to an electric motor. Los Alamos researchers Philipp Kronberg, Quentin Dufton, Stirling Colgate and Hui Li today discussed this finding at the American Astronomical Society meeting in Albuquerque, N.M.



By interpreting radio waves emanating from the gigantic magnetic fields, the researchers were able to create pictures of the fields as they extended from an object believed to be a black hole at the center of a galaxy out into regions of intergalactic space. Because the class of galaxies they studied are isolated from other intergalactic objects and gas - which could warp, distort or compress the fields - the fields extend a distance of up to ten million light years, or about six times 1019 miles.

The energy in these huge magnetic fields is comparable to that released into space as light, X-rays and gamma rays. In other words, the black hole energy is being efficiently converted into magnetic fields. The mechanism is not yet fully understood, but Kronberg and his colleagues believe a black hole accretion disk could be acting similarly to an electric motor.


Colgate and Los Alamos colleagues Vladimir Pariev and John Finn have developed a model to perhaps explain what is happening. They believe that the naturally magnetized accretion disk rotating around a black hole is punctured by clouds of stars in the vicinity of the black hole, like bullet holes in a flywheel. This, in turn, leads nonlinearly to a system similar to an electric generator that gives rise to a rotating, but invisible magnetic helix.

In this way, huge amounts of energy are carried out and away from the center of a galaxy as a set of twisted magnetic field lines that eventually appear via radio waves from luminous cloud formations on opposite sides of the galaxy.

The Los Alamos researchers are calculating methods by which enormous amounts of expelled magnetic energy are converted into heat - manifested in the form of a relativistic gas of cosmic rays that create radio energy that can be detected by radio telescopes such as the Very Large Array. Although the exact mechanism is still a mystery, the Los Alamos researchers believe that a sudden reconnection or fusing of the magnetic field lines creates and accelerates the cosmic rays.

The researchers still don’t understand why this fast magnetic field reconnection occurs. But understanding the mechanism could have important applications here on Earth such as creating a system of magnetic confinement for a fusion energy reactor.

The Los Alamos research is supported by the Laboratory Directed Research and Development Program and the Institute of Geophysics and Planetary Physics. The Natural Sciences and Engineering Research Council of Canada also provided support.

Los Alamos recently joined Southwest Universities consortium, which is hoping to build a very low frequency radio telescope called "LOFAR" in New Mexico or West Texas. The new telescope will be an excellent instrument for detecting hidden magnetic energy of the type the Los Alamos research team is interested in studying.


###
Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.

James Rickman | EurekAlert
Further information:
http://www.lanl.gov/external/news/releases

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>