Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool spacedust survey goes into orbit

04.02.2008
Experts in the School of Physics and Astronomy will be using the Herschel Space Observatory, the most powerful telescope ever launched into space, as part of a giant survey to find out more about some of the coldest objects in the Universe.

The Herschel Space Observatory, launched by the European Space Agency this Summer, promises to take our knowledge of the far reaches of space to a new level. It will have the largest mirror of any space telescope — twice the size of the famous Hubble — that will detect the ‘glow’ of spacedust at around -250C, rather than the light from stars.

As well as being able to see star-forming regions very nearby in our own galaxy, it will be able to see galaxies forming when the universe was in its infancy, more than ten billion years ago.

The University of Nottingham is a leading partner in this new survey using Herschel, which is the first space telescope to operate in the sub-millimetre part of the spectrum, between the far-infrared and microwaves. Much of this light — 0.055 to 0.67 mm in wavelength — cannot penetrate the atmosphere and so the only way to study it is from space.

Dr Loretta Dunne, of The University of Nottingham’s School of Physics and Astronomy, is leading the working group on dust in local galaxies. Dr Dunne said: “The survey will be a quantum leap in our understanding of dust in the local Universe.

“Cosmic dust is more than just a nuisance to optical astronomers. It also plays an important role in helping hot gas to cool and collapse to form galaxies and stars, and is the raw building material for planets like our own. The Earth is really a giant ball of cosmic dust! Discovering how dust is created, how long it survives and how much of it is out there, are important pieces of the puzzle of how the Universe came to look the way it does.”

Dr Steve Maddox, also at The University of Nottingham, is the co-leader of the programme on large-scale structure.

The telescope is named after renowned astronomer Sir William Herschel (1738–1822), who in 1800 demonstrated the existence of infrared light. He also, among many other discoveries, made the first sighting of the planet Uranus.

Herschel is one of the cornerstone missions of the European Space Agency and will have the largest mirror ever built for a space telescope. At 3.5 metres in diameter, the mirror will collect long-wavelength radiation from some of the coldest and most distant objects in the Universe.

Herschel’s size and capabilities mean it will be able to see the ‘stolen’ starlight emitted by cosmic dust in galaxies. Cosmic dust is not like Earthbound dust, but consists instead of tiny particles of carbon and silicates which are made in stars and supernovae and then ‘hang around’ in interstellar space for hundreds of millions of years.

The particles’ very small size — about 800 times smaller than the width of a human hair — makes them exceptionally good at capturing the light from stars, creating the dark patches seen in the Milky Way and other galaxies. The little grains are gently warmed by the starlight they bathe in and the special detectors onboard Herschel will take images of this faint glow, giving us a new view of the cold parts of galaxies.

The survey will be the widest area survey carried out by Herschel and has just been awarded the largest amount of observing time of any open-time project. The observations will take 600 hours spread over the three-year lifetime of the mission.

As it is such a large survey, it has many things to investigate, such as:
•the 'stolen' starlight in over 100,000 galaxies, absorbed by dust and re-radiated at the longer wavelengths only Herschel can see;
•rare gravitational lenses, where the warped space around a foreground galaxy is magnifying a background galaxy;
•'frustrated' galaxy birth: primeval galaxies with giant black holes which are trying to shut off the birth of the rest of their galaxy;

•how the birth of dust and stars in local galaxies depends on their environment - nature or nurture?

The survey is being conducted by a large international consortium, led jointly by the Universities of Nottingham and Cardiff.

The UK is leading one of the instruments on Herschel. More details of the important UK roles in this mission can be found at http://www.so.stfc.ac.uk/roadmap/rmProject.aspx?q=52

Herschel is due to be launched on an Ariane-5 rocket from the Guiana Space Centre, Kourou, French Guiana, in July 2008. More details on Herschel can be found at:

http://sci.esa.int/science-e/www/area/index.cfm?fareaid=16

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>