Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool spacedust survey goes into orbit

04.02.2008
Experts in the School of Physics and Astronomy will be using the Herschel Space Observatory, the most powerful telescope ever launched into space, as part of a giant survey to find out more about some of the coldest objects in the Universe.

The Herschel Space Observatory, launched by the European Space Agency this Summer, promises to take our knowledge of the far reaches of space to a new level. It will have the largest mirror of any space telescope — twice the size of the famous Hubble — that will detect the ‘glow’ of spacedust at around -250C, rather than the light from stars.

As well as being able to see star-forming regions very nearby in our own galaxy, it will be able to see galaxies forming when the universe was in its infancy, more than ten billion years ago.

The University of Nottingham is a leading partner in this new survey using Herschel, which is the first space telescope to operate in the sub-millimetre part of the spectrum, between the far-infrared and microwaves. Much of this light — 0.055 to 0.67 mm in wavelength — cannot penetrate the atmosphere and so the only way to study it is from space.

Dr Loretta Dunne, of The University of Nottingham’s School of Physics and Astronomy, is leading the working group on dust in local galaxies. Dr Dunne said: “The survey will be a quantum leap in our understanding of dust in the local Universe.

“Cosmic dust is more than just a nuisance to optical astronomers. It also plays an important role in helping hot gas to cool and collapse to form galaxies and stars, and is the raw building material for planets like our own. The Earth is really a giant ball of cosmic dust! Discovering how dust is created, how long it survives and how much of it is out there, are important pieces of the puzzle of how the Universe came to look the way it does.”

Dr Steve Maddox, also at The University of Nottingham, is the co-leader of the programme on large-scale structure.

The telescope is named after renowned astronomer Sir William Herschel (1738–1822), who in 1800 demonstrated the existence of infrared light. He also, among many other discoveries, made the first sighting of the planet Uranus.

Herschel is one of the cornerstone missions of the European Space Agency and will have the largest mirror ever built for a space telescope. At 3.5 metres in diameter, the mirror will collect long-wavelength radiation from some of the coldest and most distant objects in the Universe.

Herschel’s size and capabilities mean it will be able to see the ‘stolen’ starlight emitted by cosmic dust in galaxies. Cosmic dust is not like Earthbound dust, but consists instead of tiny particles of carbon and silicates which are made in stars and supernovae and then ‘hang around’ in interstellar space for hundreds of millions of years.

The particles’ very small size — about 800 times smaller than the width of a human hair — makes them exceptionally good at capturing the light from stars, creating the dark patches seen in the Milky Way and other galaxies. The little grains are gently warmed by the starlight they bathe in and the special detectors onboard Herschel will take images of this faint glow, giving us a new view of the cold parts of galaxies.

The survey will be the widest area survey carried out by Herschel and has just been awarded the largest amount of observing time of any open-time project. The observations will take 600 hours spread over the three-year lifetime of the mission.

As it is such a large survey, it has many things to investigate, such as:
•the 'stolen' starlight in over 100,000 galaxies, absorbed by dust and re-radiated at the longer wavelengths only Herschel can see;
•rare gravitational lenses, where the warped space around a foreground galaxy is magnifying a background galaxy;
•'frustrated' galaxy birth: primeval galaxies with giant black holes which are trying to shut off the birth of the rest of their galaxy;

•how the birth of dust and stars in local galaxies depends on their environment - nature or nurture?

The survey is being conducted by a large international consortium, led jointly by the Universities of Nottingham and Cardiff.

The UK is leading one of the instruments on Herschel. More details of the important UK roles in this mission can be found at http://www.so.stfc.ac.uk/roadmap/rmProject.aspx?q=52

Herschel is due to be launched on an Ariane-5 rocket from the Guiana Space Centre, Kourou, French Guiana, in July 2008. More details on Herschel can be found at:

http://sci.esa.int/science-e/www/area/index.cfm?fareaid=16

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>