Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes Go With the Flow

23.01.2008
Nanochannels impose order by capillary action

Carbon nanotubes are attractive candidates for use as the active elements in the next generation of electronic devices. However, it has proven incredibly difficult to align nanotubes within device architectures.

Most of the approaches for lining up carbon nanotubes reported until now are only applicable to discrete devices and are not readily scalable to the levels required for the mass production of nanotube-based chips. Now, this seemingly intractable problem has been overcome by a collaborative team of researchers from Seoul National University and Sungkyunkwan in South Korea.

Kahp Suh and his colleagues have developed a technique for aligning nanotubes over large areas based on the flow of a nanotube-containing solution through nanochannels. This technique is especially attractive because of its simplicity; no external stimuli such as the application of an electric field or syringe pumping are required to align the nanotubes.

This novel approach for aligning carbon nanotubes is based on the simple flow of a nanotube solution through a nanochannel fabricated from a charged polymeric mold. The nanotubes are ordered within the channels by the influence of the capillary force existing within the confines of the channel. When the channels are of the correct geometry, aqueous solutions containing nanotubes enter from both ends, and upon evaporation leave behind dense and highly oriented arrays of nanotubes.

Suh cautions that the mechanical properties and surface chemistry of the polymeric mold used for making the nanochannels are of paramount importance. “The stiffness of the polymer has to be just right”, says Suh, “it has to be rigid enough to keep the nanochannels from collapsing but flexible enough to bond well with the substrate over a large area”. Good adhesion is required between the nanochannel and the substrate to prevent the polymer nanochannels from coming unstuck upon the introduction of the aqueous nanotube solution. The researchers have found that polyethylene glycol diacrylate has the right combination of properties for use as the polymer mold. It is negatively charged and facilitates conformal contact with the substrate. Moreover, it is hydrophilic and thus the nanotube solution is able to enter and flow through the channels without need for additional pumping.

Suh further added that this approach represents a promising advance for the integration of nanotubes in microscale devices. The use of fluidics to bring typically unruly bundles of nanotubes into line may help to solve prevailing bottlenecks for scaling up the production of nanotube devices.

Author: Kahp Y. Suh, Seoul National University (South Korea), http://mae.snu.ac.kr/eng/about/pview.asp?pid=48

Title: Capillarity-Driven Fluidic Alignment of Single-Walled Carbon Nanotubes in Reversibly Bonded Nanochannels

Small 2008, 4, No. 1, 92–95, doi: 10.1002/smll.200700300

About Small: Micro and Nano: No small Matter. Science at the nano- and microscale is currently receiving enormous wordwide interest. Published by Wiley-VCH, Small provides the very best forum for experimental and theoretical studies of fundamental and applied interdisciplinary research at these dimensions. Read an attractive mix of peer-reviewed Communications, Reviews, Concepts, Highlights, Essays, and Full Papers.

Kahp Y. Suh | Small
Further information:
http://mae.snu.ac.kr/eng/about/pview.asp?pid=48
http://pressroom.small-journal.com

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>