Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desktop Device Generates and Traps Rare Ultracold Molecules

17.12.2007
Physicists at the University of Rochester have combined an atom-chiller with a molecule trap, creating for the first time a device that can generate and trap huge numbers of elusive-yet-valuable ultracold polar molecules.

Scientists believe ultracold polar molecules will allow them to create exotic artificial crystals and stable quantum computers.

"The neat thing about this technology is that it's a very simple, but highly efficient method," says Jan Kleinert, a doctoral physics student at the University of Rochester and designer of the new device. "It lets us produce huge quantities of these ultracold polar molecules, which opens so many doors for us."

The Thin WIre electroStatic Trap, or TWIST, is the first electrostatic polar molecule trap that works simultaneously with a magneto-optical atom trap. This means Kleinert can use the lasers of the magneto-optical trap, or MOT, to chill atoms to just a few millionths of a degree above absolute zero, then force the atoms to group into molecules, and instantaneously hold them in place with the electrostatic TWIST trap.

Traditionally, a complex process of creating and trapping is required to produce these molecules, akin to repeatedly emptying and refilling the ice cube trays in your freezer, says Kleinert. A MOT with a TWIST, however, can create and store the chilled molecules in one place, instantly—more like a refrigerator with an automatic icemaker.

While polar molecules are literally as common as water, and dozens of laboratories around the world can cool atoms to such extreme temperatures, creating an ultracold polar molecule is difficult. Ultracold atoms can combine into molecules, but since only one type of atom can usually be cooled at once, the molecules it makes are electrically symmetric, not polar. Physicists have to either chill regular polar molecules, or chill several types of atoms at the same time and force them to join into molecules. Both processes are so complex that Kleinert says only four laboratories in the world do them, and the yield of ultracold polar molecules until now has been very low.

The TWIST, developed with Kleinert's advisor, Nicholas P. Bigelow, Lee A. DuBridge Professor of Physics at the University of Rochester, makes the complex process much more efficient, and thus makes available many more of these molecules.

The secret to the TWIST is the precise thickness of the tungsten wires that loop around the molecule-production area. In Kleinert's design, atoms are chilled with the lasers of a MOT, which drains away the atoms' energy, chilling them to nearly 460 degrees Fahrenheit below zero.

So far, this is exactly the same as the traditional method, but Kleinert surrounds his target area with tungsten loops that create an electric field. The field has no effect on the chilled atoms, but as the atoms are grouped into polar molecules by a process called photoassociation, the new polar molecules, with a positive charge on one side and a negative charge on the other, are affected by the field.

The electric field has a gradient, and due to some of the strange properties of the quantum world, polar molecules tend to "slide down" that gradient, collecting in the center of the field. As a result, says Kleinert, the TWIST collects and holds the low-field seeking polar molecules but lets other unaffected particles, such as atoms or other molecules, simply drift away.

Those tungsten loops have to be thick enough that they can withstand the electrostatic forces they generate, but thin enough that they don't block the MOT laser initiating the cooling. After months of trial and error and a lot of burned-out tungsten wire, Kleinert found that wires just the width of a hair provided the perfect balance.

"The coldest molecules so far have been produced from MOTs, but until the TWIST came along, electric field trapping and MOTs just didn't go together," says Kleinert. "Now we can accumulate these polar molecules continuously, without switching from creation to storage and back again."

With a good supply of ultracold polar molecules, computer scientists would have a new tool with which to tackle the creation of quantum computers, says Kleinert.

Quantum computer scientists are attracted to ultracold particles because their temperatures reduce decoherence, a phenomenon where your system decays from the carefully prepared quantum configuration you started with, to a classical physics state, which loses all the advantages quantum computers hold.

Ultracold polar molecules in particular are especially attractive because their strong polarity allows them to interact with each other over much larger distances than other atomic particles, and the stronger the interaction between particles, the faster a quantum computer can perform certain operations.

Ultracold polar molecules may even allow scientists to venture into an unknown quarter of the Standard Model of Physics—the size of the electron, says Kleinert. The answer to whether the electron has a definite size or is just a dimensionless point in space could support the Standard Model, or support one of the many alternate models. Trying to approximate the electron's size would likely require ultracold polar molecules, which can have 100 times the sensitivity of simple ultracold atoms. That difference could be enough to make a definitive measurement supporting or chipping away at the Standard Model altogether.

About the University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College of Arts, Sciences, and Engineering is complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>