Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reinventing the wheel -- naturally

Humans did not invent the wheel. Nature did.

While the evolution from the Neolithic solid stone wheel with a single hole for an axle to the sleek wheels of today's racing bikes can be seen as the result of human ingenuity, it also represents how animals, including humans, have come to move more efficiently and quicker over millions of years on Earth, according to a Duke University engineer.

Adrian Bejan, professor of mechanical engineering at Duke's Pratt School of Engineering, argues that just as the design of wheels became lighter with fewer spokes over time, and better at distributing the stresses of hitting the ground, animals have evolved as well to move better on Earth. In essence, over millions of years, animals such as humans developed the fewest "spokes," or legs, as the most efficient method for carrying an increasing body weight and height more easily.

"This prediction of how wheels should emerge in time is confirmed by the evolution of wheel technology," Bejan said. "For example, during the development of the carriage, solid disks were slowly replaced by wheels with tens of spokes."

The advantage of spokes is that they distribute stresses uniformly while being lighter and stronger than a solid wheel. "In contrast with the spoke, the solid wheel of antiquity was stressed unevenly, with a high concentration of stresses near the contact with the ground, and zero stresses on the upper side," Bejan said. "The wheel was large and heavy, and most of its volume did not support the load that the vehicle posed on the axle.

"If you view animal movement as a 'rolling' body, two legs, swinging back and forth, perform the same function of an entire wheel-rim assembly," Bejan said. "They also do it most efficiently – like one wheel with two spokes with the stresses flowing unobstructed and uniformly through each spoke. The animal body is both wheel and vehicle for horizontal movement."

Bejan's analysis was published early online in the American Journal of Physics. His research is supported by the National Science Foundation and the Air Force Office of Scientific Research.

"An animal leg is shaped like a column because it facilitates the flow of stresses between two points – like the foot and hip joint, or paw and shoulder," Bejan said. "In the example of the Neolithic stone wheel, the flow of stresses is between the ground and the whole wheel."

Bejan believes that the constructal theory of design in nature (, which he started describing in 1996, predicts these changes in the wheel and animal movement. The theory states that for a design (an animal, a river basin) to persist in time, it must evolve to move more freely through its environment.

Since animal locomotion is basically a falling-forward process, Bejan argues that an increase in height predicts an increase in speed. For a centipede, each leg represents a point of contact with ground, which limits the upward movement of the animal. As animals have fewer contacts with ground, they can rise up higher with each stride.

"The constructal theory shows us this forward-falling movement is dictated by the natural wheel phenomenon, which is required for the minimal amount of effort expended for a certain distance traveled," Bejan said.

An earlier analysis by Bejan showed that larger human swimmers are faster because the wave they create while swimming is larger and thus carries them forward faster.

While wheel-like movement evolved naturally, it also describes what Bejan likes to call "nature's gear box." Humans have two basic speeds, Bejan said – walking and running. A running human gets taller, or higher off the ground, with each stride, which increases his speed.

A horse has three speeds – walk, trot and gallop.

"The horse increases its speed by increasing the height from which it falls during each cycle," Bejan said. "Then, from the trot to the gallop, the body movement changes abruptly such that the height of jump increases stepwise for each stride. Nature developed not only wheel-like movement but also mechanisms for changing speeds."

Richard Merritt | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>