Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reinventing the wheel -- naturally

14.06.2010
Humans did not invent the wheel. Nature did.

While the evolution from the Neolithic solid stone wheel with a single hole for an axle to the sleek wheels of today's racing bikes can be seen as the result of human ingenuity, it also represents how animals, including humans, have come to move more efficiently and quicker over millions of years on Earth, according to a Duke University engineer.

Adrian Bejan, professor of mechanical engineering at Duke's Pratt School of Engineering, argues that just as the design of wheels became lighter with fewer spokes over time, and better at distributing the stresses of hitting the ground, animals have evolved as well to move better on Earth. In essence, over millions of years, animals such as humans developed the fewest "spokes," or legs, as the most efficient method for carrying an increasing body weight and height more easily.

"This prediction of how wheels should emerge in time is confirmed by the evolution of wheel technology," Bejan said. "For example, during the development of the carriage, solid disks were slowly replaced by wheels with tens of spokes."

The advantage of spokes is that they distribute stresses uniformly while being lighter and stronger than a solid wheel. "In contrast with the spoke, the solid wheel of antiquity was stressed unevenly, with a high concentration of stresses near the contact with the ground, and zero stresses on the upper side," Bejan said. "The wheel was large and heavy, and most of its volume did not support the load that the vehicle posed on the axle.

"If you view animal movement as a 'rolling' body, two legs, swinging back and forth, perform the same function of an entire wheel-rim assembly," Bejan said. "They also do it most efficiently – like one wheel with two spokes with the stresses flowing unobstructed and uniformly through each spoke. The animal body is both wheel and vehicle for horizontal movement."

Bejan's analysis was published early online in the American Journal of Physics. His research is supported by the National Science Foundation and the Air Force Office of Scientific Research.

"An animal leg is shaped like a column because it facilitates the flow of stresses between two points – like the foot and hip joint, or paw and shoulder," Bejan said. "In the example of the Neolithic stone wheel, the flow of stresses is between the ground and the whole wheel."

Bejan believes that the constructal theory of design in nature (www.constructal.org), which he started describing in 1996, predicts these changes in the wheel and animal movement. The theory states that for a design (an animal, a river basin) to persist in time, it must evolve to move more freely through its environment.

Since animal locomotion is basically a falling-forward process, Bejan argues that an increase in height predicts an increase in speed. For a centipede, each leg represents a point of contact with ground, which limits the upward movement of the animal. As animals have fewer contacts with ground, they can rise up higher with each stride.

"The constructal theory shows us this forward-falling movement is dictated by the natural wheel phenomenon, which is required for the minimal amount of effort expended for a certain distance traveled," Bejan said.

An earlier analysis by Bejan showed that larger human swimmers are faster because the wave they create while swimming is larger and thus carries them forward faster.

While wheel-like movement evolved naturally, it also describes what Bejan likes to call "nature's gear box." Humans have two basic speeds, Bejan said – walking and running. A running human gets taller, or higher off the ground, with each stride, which increases his speed.

A horse has three speeds – walk, trot and gallop.

"The horse increases its speed by increasing the height from which it falls during each cycle," Bejan said. "Then, from the trot to the gallop, the body movement changes abruptly such that the height of jump increases stepwise for each stride. Nature developed not only wheel-like movement but also mechanisms for changing speeds."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>