Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redefining electrical current law with the transistor laser

13.05.2010
While the laws of physics weren’t made to be broken, sometimes they need revision. A major current law has been rewritten thanks to the three-port transistor laser, developed by Milton Feng and Nick Holonyak Jr. at the University of Illinois.

With the transistor laser, researchers can explore the behavior of photons, electrons and semiconductors. The device could shape the future of high-speed signal processing, integrated circuits, optical communications, supercomputing and other applications. However, harnessing these capabilities hinges on a clear understanding of the physics of the device, and data the transistor laser generated did not fit neatly within established circuit laws governing electrical currents.

“We were puzzled,” said Feng, the Holonyak Chair Professor of Electrical and Computer Engineering. “How did that work? Is it violating Kirchhoff’s law? How can the law accommodate a further output signal, a photon or optical signal?”

Kirchhoff’s current law, described by Gustav Kirchhoff in 1845, states charge input at a node is equal to the charge output. In other words, all the electrical energy going in must go out again. On a basic bipolar transistor, with ports for electrical input and output, the law applies straightforwardly. The transistor laser adds a third port for optical output, emitting light.

This posed a conundrum for researchers working with the laser: How were they to apply the laws of conservation of charge and conservation of energy with two forms of energy output?

“The optical signal is connected and related to the electrical signals, but until now it’s been dismissed in a transistor,” said Holonyak, the John Bardeen Chair Professor of Electrical and Computer Engineering and Physics at the U. of I. “Kirchhoff’s law takes care of balancing the charge, but it doesn’t take care of balancing the energies. The question is, how do you put it all together, and represent it in circuit language?”

The unique properties of the transistor laser required Holonyak, Feng and graduate student Han Wui Then to re-examine and modify the law to account for photon particles as well as electrons, effectively expanding it from a current law to a current-energy law. They published their model and supporting data in the Journal of Applied Physics, available online May 10.

“The previous law had to do with the particles – electrons coming out at a given point. But it was never about energy conservation as it was normally known and used,” Feng said. “This is the first time we see how energy is involved in the conservation process.”

Simulations based on the modified law fit data collected from the transistor laser, allowing researchers to predict the bandwidth, speed and other properties for integrated circuits, according to Feng. With accurate simulations, the team can continue exploring applications in integrated circuits and supercomputing.

“This fits so well, it’s amazing,” Feng said. “The microwave transistor laser model is very accurate for predicting frequency-dependent electrical and optical properties. The experimental data are very convincing.”

The Army Research Office supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017 | Life Sciences

Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes

22.11.2017 | Materials Sciences

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>