Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s University Belfast reveals plans for Ireland’s first x-ray laser

20.08.2008
More than 25 years ago it took a nuclear explosion under the Nevada desert to power the world’s first X-ray laser. Now, Queen’s University Belfast is set to unveil recent progress towards producing the first ever functioning X-ray laser in Ireland.

The research report will be presented during an international conference on X-ray Lasers at Queen’s this week. It has attracted leading scientists from the world’s major high-power laser laboratories who will be able to view the new sophisticated laser system at the University.

The new X-ray laser will be powered by another optical laser in Queen’s, which is one of the most powerful optical lasers available in any University laboratory worldwide.

Four hundred times more powerful than the entire UK National Grid for a very short time, it is known as TARANIS, (Terawatt Apparatus for Relativistic and Nonlinear Interdisciplinary Science). Named after the after the European Celtic god of thunder and lightning, it relies on a very powerful infra-red laser system which has been recently installed within the Centre for Plasma Physics at Queen’s.

Both laser systems will enable Queen’s researchers to attract and build a level of expertise in the general area of plasma physics, previously beyond the reach of an in-house university scale research programme in the UK.

Explaining the importance of the two laser systems, Professor Ciaran Lewis from Queen’s Centre for Plasma Physics said: “The need for an increased effort in plasma physics research and for more trained plasma physicists, is driven by the expanding use of plasmas in a wide range of applications in industry, including the effort to determine if laser-produced nuclear fusion can provide for the world’s post-oil power needs”.

“Plasmas are the ‘fourth state of matter’, along with gases, liquids and solids. In fact 99 per cent of the observable Universe, including the stars we see in the sky, is in the plasma state. X-ray lasers can be used to probe and diagnose very dense plasma conditions of the type, for example, anticipated in the core of fuel pellets compressed by powerful optical lasers. It is tremendously exciting that Queen’s laser systems are now capable of carrying out world-leading experiments involving laser-plasma interactions in extreme conditions.

“Highlighting these two new systems to our international research colleagues will ensure Queen’s Centre for Plasma Physics and its researchers remain to the fore of global breakthroughs in the area of high energy density physics. We are anticipating many new international collaborations.”

Over 30 invited speakers from countries including China, USA, Japan, Korea, Russia, France and Germany will cover recent experimental and theoretical developments in the field at the conference. Further information on the 11th International Conference on X-Ray Lasers can be found online at www.qub.ac.uk/XRL2008

For media enquiries please contact:
Lisa Mitchell, Press Officer,
+44 (0)28 9097 5384, Mob: 07814 422 572,
lisa.mitchell@qub.ac.uk

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

Further reports about: Laser Plasma high-power laser laser system optical laser plasma physics x-ray laser

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>