Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s University Belfast reveals plans for Ireland’s first x-ray laser

20.08.2008
More than 25 years ago it took a nuclear explosion under the Nevada desert to power the world’s first X-ray laser. Now, Queen’s University Belfast is set to unveil recent progress towards producing the first ever functioning X-ray laser in Ireland.

The research report will be presented during an international conference on X-ray Lasers at Queen’s this week. It has attracted leading scientists from the world’s major high-power laser laboratories who will be able to view the new sophisticated laser system at the University.

The new X-ray laser will be powered by another optical laser in Queen’s, which is one of the most powerful optical lasers available in any University laboratory worldwide.

Four hundred times more powerful than the entire UK National Grid for a very short time, it is known as TARANIS, (Terawatt Apparatus for Relativistic and Nonlinear Interdisciplinary Science). Named after the after the European Celtic god of thunder and lightning, it relies on a very powerful infra-red laser system which has been recently installed within the Centre for Plasma Physics at Queen’s.

Both laser systems will enable Queen’s researchers to attract and build a level of expertise in the general area of plasma physics, previously beyond the reach of an in-house university scale research programme in the UK.

Explaining the importance of the two laser systems, Professor Ciaran Lewis from Queen’s Centre for Plasma Physics said: “The need for an increased effort in plasma physics research and for more trained plasma physicists, is driven by the expanding use of plasmas in a wide range of applications in industry, including the effort to determine if laser-produced nuclear fusion can provide for the world’s post-oil power needs”.

“Plasmas are the ‘fourth state of matter’, along with gases, liquids and solids. In fact 99 per cent of the observable Universe, including the stars we see in the sky, is in the plasma state. X-ray lasers can be used to probe and diagnose very dense plasma conditions of the type, for example, anticipated in the core of fuel pellets compressed by powerful optical lasers. It is tremendously exciting that Queen’s laser systems are now capable of carrying out world-leading experiments involving laser-plasma interactions in extreme conditions.

“Highlighting these two new systems to our international research colleagues will ensure Queen’s Centre for Plasma Physics and its researchers remain to the fore of global breakthroughs in the area of high energy density physics. We are anticipating many new international collaborations.”

Over 30 invited speakers from countries including China, USA, Japan, Korea, Russia, France and Germany will cover recent experimental and theoretical developments in the field at the conference. Further information on the 11th International Conference on X-Ray Lasers can be found online at www.qub.ac.uk/XRL2008

For media enquiries please contact:
Lisa Mitchell, Press Officer,
+44 (0)28 9097 5384, Mob: 07814 422 572,
lisa.mitchell@qub.ac.uk

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

Further reports about: Laser Plasma high-power laser laser system optical laser plasma physics x-ray laser

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>