Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum simulations uncoverhydrogen's phase transitions

24.06.2010
Hydrogen is the most abundant element in the universe and is a major component of giant planets such as Jupiter and Saturn.

But not much is known about what happens to this abundant element under high-pressure conditions when it transforms from one state to another.

Using quantum simulations, scientists at the Lawrence Livermore National Laboratory, the University of Illinois at Urbana-Champaign and the University of L'Aquia in Italy were able to uncover these phase transitions in the laboratory similar to how they would occur in the centers of giant planets.

They discovered a first order phase transition, a discontinuity, in liquid hydrogen between a molecular state with low conductivity and a highly conductive atomic state. The critical point of the transition occurs at high temperatures, near 3100 degrees Fahrenheit and more than 1 million atmospheres of pressure.

"This research sheds light on the properties of this ubiquitous element and may aid in efforts to understand the formation of planets," said LLNL's Eric Schwegler.

The team used a variety of sophisticated quantum simulation approaches to examine the onset of molecular diassociation in hydrogen under high-pressure conditions. The simulations indicated there is a range of densities where the electrical conductivity of the fluid increases in a discontinuous fashion for temperatures below 3100 degrees Fahrenheit.

There is a liquid-liquid-solid multiphase coexistence point in the hydrogen phase diagram that corresponds to the intersection of the liquid-liquid phase transition, according to Miguel Morales from the University of Illinois and lead author of a paper appearing online in the Proceedings of the National Academy of Sciences for the week of June 21-25.

Other collaborators include Prof. David Ceperley from the University of Illinois at Urbana-Champaign, and Prof. Carlo Pierleoni from the University of L'Aquila. The work was funded in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program.

Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>