Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum simulations uncoverhydrogen's phase transitions

24.06.2010
Hydrogen is the most abundant element in the universe and is a major component of giant planets such as Jupiter and Saturn.

But not much is known about what happens to this abundant element under high-pressure conditions when it transforms from one state to another.

Using quantum simulations, scientists at the Lawrence Livermore National Laboratory, the University of Illinois at Urbana-Champaign and the University of L'Aquia in Italy were able to uncover these phase transitions in the laboratory similar to how they would occur in the centers of giant planets.

They discovered a first order phase transition, a discontinuity, in liquid hydrogen between a molecular state with low conductivity and a highly conductive atomic state. The critical point of the transition occurs at high temperatures, near 3100 degrees Fahrenheit and more than 1 million atmospheres of pressure.

"This research sheds light on the properties of this ubiquitous element and may aid in efforts to understand the formation of planets," said LLNL's Eric Schwegler.

The team used a variety of sophisticated quantum simulation approaches to examine the onset of molecular diassociation in hydrogen under high-pressure conditions. The simulations indicated there is a range of densities where the electrical conductivity of the fluid increases in a discontinuous fashion for temperatures below 3100 degrees Fahrenheit.

There is a liquid-liquid-solid multiphase coexistence point in the hydrogen phase diagram that corresponds to the intersection of the liquid-liquid phase transition, according to Miguel Morales from the University of Illinois and lead author of a paper appearing online in the Proceedings of the National Academy of Sciences for the week of June 21-25.

Other collaborators include Prof. David Ceperley from the University of Illinois at Urbana-Champaign, and Prof. Carlo Pierleoni from the University of L'Aquila. The work was funded in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program.

Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>