Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Dynamics of Matter Waves revealexotic Multi-Body Collisions

13.05.2010
MPQ-LMU scientists demonstrate for the first time exotic multi-particle interactions between ultracold atoms in an artificial crystal of light.

At extremely low temperatures atoms can aggregate into so-called Bose Einstein condensates forming coherent laser-like matter waves. Due to interactions between the atoms fundamental quantum dynamics emerge and give rise to periodic collapses and revivals of the matter wave field.

A group of scientists led by Professor Immanuel Bloch (Chair of Experimental Physics at the Ludwig-Maximilians-Universität München (LMU) and Director of the Quantum Many Body Systems Division at the Max Planck Institute of Quantum Optics in Garching) has now succeeded to take a glance ‘behind the scenes’ of atomic interactions revealing the complex structure of these quantum dynamics.

By generating thousands of miniature BECs ordered in an optical lattice the researchers were able to observe a large number of collapse and revival cycles over long periods of time. The experimental results imply that the atoms do not only interact pairwise - as typically assumed - but also perform exotic collisions involving three, four or more atoms at the same time (Nature, DOI:10.1038/nature09036). On the one hand, these results have fundamental importance for the understanding of quantum many-body systems. On the other hand, they pave the way for the generation of new exotic states of matter, based on such multi-body interactions.

The experiment starts by cooling a dilute cloud of hundreds of thousands of atoms to temperatures close to absolute zero, approximately -273 degrees Celsius. At these temperatures the atoms form a so-called Bose-Einstein condensate (BEC), a quantum phase in which all particles occupy the same quantum state. Now an optical lattice is superimposed on the BEC: This is a kind of artificial crystal made of light with periodically arranged bright and dark areas, generated by the superposition of standing laser light waves from different directions. This lattice can be viewed as an ‘egg carton’ on which the atoms are distributed. Whereas in a real egg carton each site is either occupied by a single egg or no egg, the number of atoms sitting at each lattice site is determined by the laws of quantum mechanics: Depending on the lattice height (i.e. the intensity of the laser beam) the single lattice sites can be occupied by zero, one, two, three and more atoms at the same time.

The use of those ‘atom number superposition states’ is the key to the novel measurement principle developed by the researchers. The dynamics of an atom number state can be compared to the dynamics of a swinging pendulum. As pendulums of different lengths are characterized by different oscillation frequencies, the same applies to the states of different atom numbers. “However, these frequencies are modified by inter-atomic collisions. If only pairwise interactions between atoms were present, the pendulums representing the individual atom number states would swing synchronously and their oscillation frequencies would be exact multiples of the pendulum frequency for two interacting atoms”, Sebastian Will, graduate student at the experiment, explains.

Using a tricky experimental set-up the physicists were able to track the evolution of the different superimposed oscillations over time. Periodically interference patterns became visible and disappeared, again and again (see figure below). From their intensity and periodicity the physicists found unambiguous evidence that the frequencies are actually not simple multiples of the two-body case. “This really caught us by surprise. We became aware that a more complex mechanism must be at work”, Sebastian Will recalls. “Due to their ultralow temperature the atoms occupy the energetically lowest possible quantum state at each lattice site. Nevertheless, Heisenberg’s uncertainty principle allows them to make – so to speak - a virtual detour via energetically higher lying quantum states during their collision. Practically, this mechanism gives rise to exotic collisions, which involve three, four or more atoms at the same time.”

The results reported in this work provide an improved understanding of interactions between microscopic particles. This may not only be of fundamental scientific interest, but find a direct application in the context of ultracold atoms in optical lattices. Owing to exceptional experimental controllability, ultracold atoms in optical lattices can form a ‘quantum simulator’ to model condensed matter systems. Such a quantum simulator is expected to help understand the physics behind superconductivity or quantum magnetism. Furthermore, as each lattice site represents a miniature laboratory for the generation of exotic quantum states, experimental set-ups using optical lattices may turn out to be the most sensitive probes for observing atomic collisions. Sebastian Will/Olivia Meyer-Streng

Original Publication:
Sebastian Will, Thorsten Best, Ulrich Schneider, Lucia Hackermüller, Dirk-Sören Lühmann, Immanuel Bloch
„Time-resolved observation of coherent multi-body interactions in quantum phase revivals“

Nature, DOI:10.1038/nature09036, May 13, 2010

Contact and further information:

http://www.quantum-munich.de

Dipl.-Phys. Sebastian Will
LMU München, Fakultät für Physik
Schellingstr. 4
80799 München
Phone: +49 89 2180 6133
Phone (mobil): +49 177 2581588
Fax: +49 89 2180 63851
e-mail: sebastian.will@lmu.de
Prof. Dr. Immanuel Bloch
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 32905 138
Fax: +49 89 32905 313
e-mail: immanuel.bloch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: BEC Dynamic Multi-Body Optic Quantum atomic collision collisions optical lattice ultracold atoms waves

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>