Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a new spin on computing

22.06.2011
Physicists at the University of Arizona have achieved a breakthrough toward the development of a new breed of computing devices that can process data using less power

In a recent publication in Physical Review Letters, physicists at the University of Arizona propose a way to translate the elusive magnetic spin of electrons into easily measurable electric signals. The finding is a key step in the development of computing based on spintronics, which doesn't rely on electron charge to digitize information.

Unlike conventional computing devices, which require electric charges to flow along a circuit, spintronics harnesses the magnetic properties of electrons rather than their electric charge to process and store information.

"Spintronics has the potential to overcome several shortcomings of conventional, charge-based computing. Microprocessors store information only as long as they are powered up, which is the reason computers take time to boot up and lose any data in their working memory if there is a loss of power," said Philippe Jacquod, an associate professor with joint appointments in the College of Optical Sciences and the department of physics at the College of Science, who published the research together with his postdoctoral assistant, Peter Stano.

"In addition, charge-based microprocessors are leaky, meaning they have to run an electric current all the time just to keep the data in their working memory at their right value," Jacquod added. "That's one reason why laptops get hot while they're working."

"Spintronics avoids this because it treats the electrons as tiny magnets that retain the information they store even when the device is powered down. That might save a lot of energy."

To understand the concept of spintronics, it helps to picture each electron as a tiny magnet, Jacquod explained.

"Every electron has a certain mass, a certain charge and a certain magnetic moment, or as we physicists call it, a spin," he said. "The electron is not physically spinning around, but it has a magnetic north pole and a magnetic south pole. Its spin depends on which pole is pointing up."

Current microprocessors digitize information into bits, or "zeroes" and "ones," determined by the absence or presence of electric charges. "Zero" means very few electronic charges are present; "one" means there are many of them. In spintronics, only the orientation of an electron's magnetic spin determines whether it counts as a zero or a one.

"You want as many magnetic units as possible, but you also want to be able to manipulate them to generate, transfer and exchange information, while making them as small as possible" Jacquod said.

Taking advantage of the magnetic moment of electrons for information processing requires converting their magnetic spin into an electric signal. This is commonly achieved using contacts consisting of common iron magnets or with large magnetic fields. However, iron magnets are too crude to work at the nanoscale of tomorrow's microprocessors, while large magnetic fields disturb the very currents they are supposed to measure.

"Controlling the spin of the electrons is very difficult because it responds very weakly to external magnetic fields," Jacquod explained. "In addition, it is very hard to localize magnetic fields. Both make it hard to miniaturize this technology."

"It would be much better if you could read out the spin by making an electric measurement instead of a magnetic measurement, because miniaturized electric circuits are already widely available," he added.

In their research paper, based on theoretical calculations controlled by numerical simulations, Jacquod and Stano propose a protocol using existing technology and requiring only small magnetic fields to measure the spin of electrons.

"We take advantage of a nanoscale structure known as a quantum point contact, which one can think of as the ultimate bottleneck for electrons," Jacquod explained. "As the electrons are flowing through the circuit, their motion through that bottleneck is constrained by quantum mechanics. Placing a small magnetic field around that constriction allows us to measure the spin of the electrons."

"We can read out the spin of the electrons based on how the current through the bottleneck changes as we vary the magnetic field around it. Looking at how the current changes tells us about the spin of the electrons."

"Our experience tells us that our protocol has a very good chance to work in practice because we have done similar calculations of other phenomena," Jacquod said. "That gives us the confidence in the reliability of these results."

In addition to being able to detect and manipulate the magnetic spin of the electrons, the work is a step forward in terms of quantifying it.

"We can measure the average spin of a flow of electrons passing through the bottleneck," Jacquod explained. "The electrons have different spins, but if there is an excess in one direction, for example ten percent more electrons with an upward spin, we can measure that rather precisely."

He said that up until now, researchers could only determine there was excess, but were not able to quantify it.

"Once you know how to produce the excess spin and know how to measure it, you could start thinking about doing basic computing tasks," he said, adding that in order to transform this work into applications, some distance has yet to be covered.

"We are hopeful that a fundamental stumbling block will very soon be removed from the spintronics roadmap," Stano added.

Spintronics could be a stepping stone for quantum computing, in which an electron not only encodes zero or one, but many intermediate states simultaneously. To achieve this, however, this research should be extended to deal with electrons one-by-one, a feat that has yet to be accomplished.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>