Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the fate of underground carbon

24.11.2009
Tool for estimating size of greenhouse gas-trapping reservoirs to be presented

A team of researchers at the Massachusetts Institute of Technology has developed a new modeling methodology for determining the capacity and assessing the risks of leakage of potential underground carbon-dioxide reservoirs.

One strategy for mitigating greenhouse gases is to inject compressed carbon dioxide into natural aquifers made of permeable rock soaked with brackish salt water. Carbon dioxide is less viscous and less dense than the water, and, once injected, it rises to the top of the aquifer. The permeable rock usually lies underneath a dense, impermeable "cap rock," that traps the gas deep underground for long periods of time.

Cap rocks are often tilted, however, and as the carbon dioxide rises through the aquifer, it can slip out, eventually making its way back into the atmosphere. Engineers seek to avoid leakage by mapping potential reservoirs and using theoretical tools to predict carbon dioxide flow.

Now doctoral students Christopher MacMinn and Michael Szulczewski and Professor Ruben Juanes of the Massachusetts Institute of Technology have developed a new modeling methodology for determining the capacity of potential reservoirs and for assessing the risks of leakage. They will present their findings at the 62nd Annual Meeting of the American Physical Society's (APS) Division of Fluid Dynamics will take place from November 22-24 at the Minneapolis Convention Center.

The tool takes into account key aspects of the underlying physics to predict the shape and pattern of flow when carbon dioxide is injected into a deep underground aquifer.

"Our new modeling tool is analytical rather than numerical, which means it incorporates the three primary physical mechanisms by which carbon dioxide is trapped in briny substrate -- structural, capillary and dissolution trapping -- into a single, comprehensive mathematical expression that can be solved quickly," says MacMinn. "This makes it possible for us to alter key parameters, such as the aquifer permeability, the fluid viscosities or the tilt of the cap rock, and within seconds, predict how the plume of carbon dioxide will migrate through the subsurface."

Before, each parameter change in a numerical model added hours or days to the time it took a computer to model discrete sections of the substrate and pull all these together into a prediction of carbon dioxide behavior under those limited circumstances. Engineers would have needed to run dozens if not hundreds of these to incorporate all the likely parameter permutations, making this an infeasible means of assessment. The hope now is that engineers and geologists may be able to use this new modeling tool to quickly and inexpensively determine whether carbon dioxide would escape from a geological reservoir.

The presentation "Post-Injection Migration of CO2 in Saline Aquifers subject to Groundwater Flow, Aquifer Slope, and Capillary Trapping" by Christopher MacMinn, Michael Szulczewski, and Ruben Juanes of the Massachusetts Institute of Technology is at 11:48 a.m. on Monday, November 23, 2009.

MORE MEETING INFORMATION

The 62nd Annual DFD Meeting is largest scientific meeting of the year devoted to the fluid dynamics, it brings together researchers from around the globe to present work with applications in engineering, energy, physics, climate, astronomy, medicine, and mathematics. It will be held at the Minneapolis Convention Center in downtown Minneapolis. All meeting information, including directions to the Convention Center is at: http://www.dfd2009.umn.edu/

PRESS REGISTRATION

Credentialed full-time journalist and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Jason Bardi (jbardi@aip.org, 301-209-3091).

USEFUL LINKS

Main meeting Web site:
http://meetings.aps.org/Meeting/DFD09/Content/1629
Searchable form:
http://meetings.aps.org/Meeting/DFD09/SearchAbstract
Local Conference Meeting Website:
http://www.dfd2009.umn.edu/
PDF of Meeting Abstracts:
http://flux.aps.org/meetings/YR09/DFD09/all_DFD09.pdf
Division of Fluid Dynamics page:
http://www.aps.org/units/dfd/
Virtual Press Room:
SEE BELOW
VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room will contain tips on dozens of stories as well as stunning graphics and lay-language papers detailing some of the most interesting results at the meeting. Lay-language papers are roughly 500 word summaries written for a general audience by the authors of individual presentations with accompanying graphics and multimedia files. The Virtual Press Room will serve as starting points for journalists who are interested in covering the meeting but cannot attend in person. See: http://www.aps.org/units/dfd/pressroom/index.cfm

Currently, the Division of Fluid Dynamics Virtual Press Room contains information related to the 2008 meeting. In mid-November, the Virtual Press Room will be updated for this year's meeting, and another news release will be sent out at that time.

ONSITE WORKSPACE FOR REPORTERS

A reserved workspace with wireless internet connections will be available for use by reporters. It will be located in the meeting exhibition hall (Ballroom AB) at the Minneapolis Convention Center on Sunday and Monday from 8:00 a.m. to 5:00 p.m. and on Tuesday from 8:00 a.m. to noon. Press announcements and other news will be available in the Virtual Press Room.

GALLERY OF FLUID MOTION

Every year, the APS Division of Fluid Dynamics hosts posters and videos that show stunning images and graphics from either computational or experimental studies of flow phenomena. The outstanding entries, selected by a panel of referees for artistic content, originality and ability to convey information, will be honored during the meeting, placed on display at the Annual APS Meeting in March of 2010, and will appear in the annual Gallery of Fluid Motion article in the September 2010 issue of the journal Physics of Fluids.

This year, selected entries from the 27th Annual Gallery of Fluid Motion will be hosted as part of the Fluid Dynamics Virtual Press Room. In mid-November, when the Virtual Press Room is launched, another announcement will be sent out.

ABOUT THE APS DIVISION OF FLUID DYNAMICS

The Division of Fluid Dynamics of the American Physical Society exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org
http://www.aps.org/units/dfd/

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>