Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New planets around sun-like stars

15.12.2009
An international team of planet hunters has found four new planets orbiting two nearby stars that are very similar to the Sun. These discoveries point the way to the detection of potentially habitable worlds within a few years.

The planets were found by Australian, American and British astronomers using the Anglo-Australian Telescope in New South Wales and the Keck Telescope in Hawai'i. They employed the "Doppler wobble" technique, which measures how stars are tugged around by their planets' gravity.

Three planets with masses ranging from 5.3 to 24.9 Earth masses orbit the star 61 Virginis, which is virtually a twin of the Sun.

"These planets are particularly exciting," said team member Professor Chris Tinney of the University of NSW. "Neptune in our Solar System has a mass 17 times that of the Earth. It looks like there may be many Sun-like stars nearby with planets of that mass or less. They point the way to even smaller planets that could be rocky and suitable for life."

61 Virginis can be seen with the naked eye. It lies 28 light-years from Earth in the constellation of Virgo, which at this time of year can be seen rising a few hours before the Sun. The findings for 61 Virginis are to be published in The Astrophysical Journal.

The fourth planet the research team found is a Jupiter-mass planet orbiting the Sun-like star 23 Librae. 23 Librae lies 84 light-years away in the constellation of Libra. Another planet was found around this star in 2006: this new one is the second.The new planet has a 14-year orbit. This makes it very like Jupiter, which has a 12-year orbit.

"In fact, what we detect from this star system is very like what we'd detect from our own Solar System if we were observing it from a distance, because Jupiter has the strongest gravitational effect of all our Sun's planets," said Dr Simon O'Toole of the Anglo-Australian Observatory, a member of the planet-hunting team.

"We are now in a position to quantify how common planets like Jupiter are around stars like our Sun," said team member Hugh Jones of University of Hertfordshire. "Compared to the Solar System, most extrasolar systems look odd, with planets in very small or very elliptical orbits. In contrast, this new planet has an orbit that is both large, and nearly circular—and for the first time we are beginning to see systems that resemble our own."

"These detections are truly at the current state-of-the-art," said team member Dr Paul Butler of the Carnegie Institute of Washington, "The inner planet of the 61 Vir system is among the two or three lowest-amplitude planetary signals that have been identified with confidence. We've found there's a tremendous advantage to be gained from combining data from two world-class observatories, and it's clear that we'll have an excellent shot at identifying potentially habitable planets around the very nearest stars within just a few years."

Chris Tinney | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>