Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PICO and SALVE: Understanding the Subatomic World Better

19.12.2008
DFG-Funded Instrumentation Enables World-Class Research in Electron Microscopy

Two new high-resolution transmission electron microscopes, co-financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), are set to open up new opportunities for research in physics and materials science. The new research microscopes at RWTH Aachen University and the University of Ulm will enable exceptional, state-of-the-art developments in the field of electron optics in Germany and be available to a broad group of users.

“With these new microscopes, Germany has the great opportunity to stay right at the cutting edge of electron microscopy,” said Burkhard Jahnen, who is responsible for projects in materials science, engineering and electron microscopy at the DFG’s Head Office. Thanks to these state-of-the-art microscopes it will not only be possible to study new materials at higher resolution in the future, for example for research in the fields of energy or information and communication technology, it will also open up an entirely new field of materials science that has been impossible to study to date with existing electron-optical techniques.

The “PICO” (Advanced Picometer Resolution Project) microscope, which has been approved for the RWTH Aachen, will extend the resolution that can be achieved by electron microscopes to a hitherto unimaginable scale. It will be the first microscope in the world to be capable of detecting the position of atoms to a resolution of 50 picometers – one picometer is one hundredth of the diameter of an atom – thus doubling the performance of the current generation of electron microscopes. This will not only make it possible to see individual atoms, but also to measure the interatomic distance and atomic motion to an accuracy of approximately one picometer. At the same time, it will be possible to investigate the nature of the atoms by spectroscopic analysis and study their chemical bonds.

The DFG is providing 2.5 million euros in funding for the PICO project, which will cost approximately 15 million euros in total, which will be matched by the state of North Rhine-Westphalia. The Federal Ministry for Education and Research (BMBF) will provide funding for additional components for the microscope and finance some of the required building work. The new microscope will be located at the Ernst Ruska Centre (ER-C) for Microscopy and Spectroscopy with Electrons, which is operated by the RWTH Aachen and the Jülich Research Centre. The ER-C is one of the leading international research centres in the field of ultra-high resolution electron microscopy.

The resolution of the SALVE (Sub-Ångstrøm Low Voltage Transmission Electron Microscopy) project’s low-voltage transmission electron microscope at the University of Ulm poses a serious challenge to researchers. The main focus of this five-year project is on imaging individual atoms in materials for applications in nanotechnology that are sensitive to the energy of the electron beam that would quickly be destroyed in conventional electron microscopy. The project plans to use low acceleration voltages that have barely been used in practice in electron microscopes to date, while simultaneously applying state-of-the-art electron-optical methods.

This new microscope will make it possible to reveal molecular structures and follow molecular processes, allowing researchers to unlock the secrets of chemical reactions. The DFG is providing 4.2 million euros in funding for the project, which will cost approximately 11.5 million euros in total, while the state of Baden-Württemberg will provide 2.4 million euros and a further 3.7 million euros, including an endowed chair, will be funded by Carl Zeiss AG from Oberkochen.

Jutta Hoehn | alfa
Further information:
http://www.dfg.de

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>