Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists consider implications of recent revelations about the universe's first light


The world was stunned by the recent announcement that a telescope at the South Pole had detected a cosmic fossil from the earliest moments of creation; During a live Google Hangout, 4 astrophysicists discussed the implications

Last month, scientists announced the first hard evidence for cosmic inflation, the process by which the infant universe swelled from microscopic to cosmic size in an instant. This almost unimaginably fast expansion was first theorized more than three decades ago, yet only now has "smoking gun" proof emerged.

What is this result and what does it mean for our understanding of the universe? Late last week, two members of the discovery team discussed the finding and its implications with two of the field's preeminent thought leaders.

Walter Ogburn is a postdoctoral researcher at the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and a member of the discovery team. For him, the exciting thing "is not just confirming that inflation happened— many of us already had a pretty good idea that was likely to be the case—but having a chance to figure out exactly how it happened, what it was that drove it, whether there are new particles and new fields that participated in it, and which of the many models could be correct."

That's made possible by the strength of the detected signal. Far from the quiet whisper that many expected, the signal turned out to be a relatively loud drone. That brings with it many implications.

"The theoretical community is abuzz," says theorist Michael S. Turner, Director of the Kavli Institute for Cosmological Physics (KICP) and the Bruce V. and Diana M. Rauner Distinguished Service Professor at the University of Chicago. Turner, who was not involved in the experiment, continues:

"We got the signal we were looking for—that's good—but we shouldn't have gotten one according to the highbrow theorists because they said it should be too small. So we also got a surprise. And often in science, that's the case. We like to the experimenters to find what we predict, but we also like surprises."

This surprise is still so new that additional implications keep coming to light each week. It's already clear that the result rules out many theoretical models of inflation—most of them, in fact—because they predict a signal much weaker than the one detected. In addition, the discovery also seems to disprove a theory that says that the universe expands, collapses and expands again in an ongoing cycle.

More than that, the result could very well be what Turner calls a "crack in the cosmic egg," offering clues that even the most accepted theoretical assumptions contain inaccuracies.

"There have been hints for a while now that maybe something else is going on," says KICP Deputy Director John Carlstrom, who leads two other experiments that study the universe's first light. "Maybe we need to… allow some new physics in there. Maybe there are more neutrinos. Maybe they're more massive than we thought. Or maybe it's something none of us have thought of yet."

Theorists will carefully consider these ideas and their implications over the coming months and years. Meanwhile, the signal still needs to be experimentally confirmed. Results from other telescopes, including the Planck satellite and the South Pole Telescope, are expected in the coming year.

After that, the next step will be to measure more carefully the characteristics of the signal, searching for evidence of how inflation took place and how exactly the universe worked in its high-energy infancy. Those results may shed light on some of our biggest questions about how the universe began and how the forces of nature are unified.

But for now, the community is still buzzing with this first evidence of cosmic inflation.

"It's a funny thing when you're on the inside of a discovery like this," says Abigail Vieregg, an active member the discovery team and a professor at the University of Chicago and KICP. "It's only when you release the results to the world and watch the reaction of the community that, at least for me, it really hits home how important it is. If this is what we think it is, it's a very big deal."


The complete, discussion, recorded live during a Google Hangout, is available at's-first-light

James Cohen | Eurek Alert!
Further information:

Further reports about: Kavli Physicists buzzing cosmic inflation cosmic size implications

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>