Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Research Answers Long-Standing Question About Swimming in Elastic Liquids

19.05.2011
A biomechanical experiment conducted at the University of Pennsylvania School of Engineering and Applied Science has answered a long-standing theoretical question: Will microorganisms swim faster or slower in elastic fluids? For a prevalent type of swimming, undulation, the answer is “slower.”

Paulo Arratia, assistant professor of mechanical engineering and applied mechanics, along with student Xiaoning Shen, conducted the experiment. Their findings were published in the journal Physical Review Letters.

Many animals, microorganisms and cells move by undulation, and they often do so through elastic fluids. From worms aerating wet soil to sperm racing toward an egg, swimming dynamics in elastic fluids is relevant to a number of facets of everyday life; however, decades of research in this area have been almost entirely theoretical or done with computer models. Only a few investigations involved live organisms.

“There have been qualitative observations of sperm cells, for example, where you put sperm in water and watch their tails, then put them in an elastic fluid and see how they swim differently,” Arratia said. “But this difference has never been characterized, never put into numbers to quantify exactly how much elasticity affects the way they swim, is it faster or slower and why.”

The main obstacle for quantitatively testing these theories with live organisms is developing an elastic fluid in which they can survive, behave normally and in which they can be effectively observed under a microscope.

Arratia and Shen experimented on the nematode C. elegans, building a swimming course for the millimeter-long worms. The researchers filmed them through a microscope while the creatures swam the course in many different liquids with different elasticity but the same viscosity.

Though the two liquid traits, elasticity and viscosity, sound like they are two sides of the same coin, they are actually independent of each other. Viscosity is a liquid’s resistance to flowing; elasticity describes its tendency to resume its original shape after it has been deformed. All fluids have some level of viscosity, but certain liquids like saliva or mucus, under certain conditions, can act like a rubber band.

Increased viscosity would slow a swimming organism, but how one would fare with increased elasticity was an open question.

“The theorists had a lot of different predictions,” Arratia said. “Some people said elasticity would make things go faster. Others said it would make things go slower. It was all over the map.

“We were the first ones to show that, with this animal, elasticity actually brings the speed and swimming efficiency down.”

The reason the nematodes swam slower has to do with how viscosity and elasticity can influence each other.

“In order to make our fluids elastic, we put polymers in them,” Arratia said. “DNA, for example, is a polymer. What we use is very similar to DNA, in that if you leave it alone it is coiled. But if you apply a force to it, the DNA or our polymer, will start to unravel.

“With each swimming stroke, the nematode stretches the polymer. And every time the polymers are stretched, the viscosity goes up. And as the viscosity goes up, it's more resistance to move through.”

Beyond giving theorists and models a real-world benchmark to work from, Arratia and Shen’s experiment opens the door for more live-organism experiments. There are still many un-answered questions relating to swimming dynamics and elasticity.

“We can increase the elasticity and see if there is a mode in which speed goes up again. Once the fluid is strongly elastic, or closer to a solid, we want to see what happens,” Arratia said. “Is there a point where it switches from swimming to crawling?”

Arratia and Shen’s research was supported by the National Science Foundation.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>