Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon physicists use geometry to understand 'jamming' process

21.03.2014

New study allows scientists to visualize why free-moving objects jam when compressed

University of Oregon physicists using a supercomputer and mathematically rich formulas have captured fundamental insights about what happens when objects moving freely jam to a standstill.

Their approach captures jamming -- the point at which objects come together too tightly to move -- by identifying geometric signatures. The payoff, while likely far down the road, could be a roadmap to preventing overfilled conveyor belts from stopping in factories, separating oil deposits trapped in sand, or allowing for the rapid, efficient transfer of mass quantities of data packets on the Internet, say UO doctoral student Peter K. Morse and physics professor Eric I. Corwin.

Their paper "Geometric Signatures of Jamming in the Mechanical Vacuum" is online ahead of print in the journal Physical Review Letters.

"The history of the field has been looking at mechanical properties really close to the jamming transition, right where a sand pile starts to push back," said Corwin, whose research is supported by a National Science Foundation Faculty Early Career Development award. "What we're doing that is really different is we're asking what happens before the sand pile starts to push back. When it's not pushing back, you can't get any information about its mechanical properties. So, instead, we're looking at the geometry -- where particles are in relation to one another."

The problem, Corwin said, involves an ages-old question used to introduce physics in early education: Is sand a liquid, a solid or a gas? "Make a sand pile, step back and it holds its shape, so clearly it's a solid," he said. "But I can take that same sand and pour it into a bucket; it flows in and takes the shape of the container and has a level surface, so clearly sand is a liquid. Or I can put a top on the bucket and shake it around really hard, and when I do that the sand fills all of the space. Clearly sand is a gas. Except, it's none of those things.

"This has led to granular materials, or little chunks of things, being referred to as a fourth state of matter," he continued. "Is sand something else? One thing everyone agrees on -- the one feature about sand or piles of gravel or piles of glass spheres or ball bearings, that makes them really unique -- is that when spread out they can't support any load. If you keep compressing them, and they get denser and denser, you reach a density where it's like flipping a switch. All of a sudden they can support a load."

The key, the researchers said, is identifying the nearest neighbors of particles. This is done using the Voronoi construction, a method of dividing spaces into a number of regions that was devised by Georgy Feodosevich Voronoy, a Russian mathematician in the late 19th century.

"Imagine a cluster of islands in the ocean," Morse said. "If you found yourself dropped in the water you would swim to the nearest island. You could say that the island 'owns' the region of ocean closest to it and islands that 'own' adjacent patches of ocean are nearest neighbors. We use this to characterize the internal geometry of a sand pile."

To study what happens to this internal geometry as a sand pile is compressed, they entered data into the UO's new ACISS (Applied Computational Instrument for Scientific Synthesis) supercomputer, applying the Voronoi construction.

"Using these cells, called Voronoi tesslations, you can find out all you want to know about a geometric object -- its volume, surface area, number of sides -- you get it all," said Morse, who also is a fellow of the UO's GK-12 Science Outreach Program that links chemistry and physics graduate students with the state's elementary and middle schools. "All of the geometric features that we can think of so far show us that systems below jamming are very different than systems that are about to jam or that are jammed already. We end up finding that this purely geometric construct will exhibit this phase transition."

And by carrying out their computations into multidimensional spaces -- up to the eighth dimension in this project -- researchers learned that the physics of the jamming process can be simply identified by seeing what happens in the transition from 2-D to 3-D spaces. It's at that level, applying the knowledge to high-dimensional spaces, Corwin said, that application to expanding data transfer capabilities come into focus.

"The new ACISS supercomputer puts the UO at the forefront of a revolution that applies cloud computing to scientific investigation in physics, biology, chemistry, human brain science and computer science," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. "By incorporating the powerful ACISS computer into this project, Dr. Corwin and his team were able to examine the geometry of jamming and provide a new perspective on the process that has potential applications down the road for everything from manufacturing to computing to power production."

###

NSF grants DMR-1255370 and DGE-0742540 supported the research.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources: Eric Corwin assistant professor of physics, 541-346-4697 (lab), ecorwin@uoregon.edu; Peter Morse, doctoral student, physics, 541-346-4697, peterm@uoregon.edu

Links:

Paper: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.115701

Corwin faculty page: http://physics.uoregon.edu/profile/ecorwin/

GK-12 Science Outreach Program: http://materialscience.uoregon.edu/GK12/Overview.html

UO Physics Department: http://physics.uoregon.edu/

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

UO Science on Twitter: http://twitter.com/UO_Research

More UO Science/Research News: http://uoresearch.uoregon.edu

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Jim Barlow | EurekAlert!

Further reports about: Outreach construction geometry materials physics properties transition

More articles from Physics and Astronomy:

nachricht Astronomers identify a young heavyweight star in the Milky Way
22.08.2016 | University of Cambridge

nachricht Venus-like exoplanet might have oxygen atmosphere, but not life
19.08.2016 | Harvard-Smithsonian Center for Astrophysics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>