Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics made to measure

18.09.2009
Joint spin-off of LMU Munich and MPG established

If you are in the business of developing high-speed electronic components, it pays not to lose sight of the electrons. To keep track of them you will need to use dedicated optical elements, such as those now on offer from UltraFast Innovations GmbH.

The new company, which has just been founded by researchers at Ludwig-Maximilians-Universität (LMU) in Munich and the Max Planck Society (MPG), manufactures specialized mirrors and other optical elements for use with pulsed laser light and x-rays. These components allow to generate and manipulate ultrashort light pulses.

Pulses of extremely short duration, in turn, make it possible to observe the movement of the electrons in atoms and molecules in real time. Mirrors suitable for this purpose have only been commercially available to a limited extent until now. They will be of interest to companies that manufacture laser systems for industrial applications, as well as to research groups in the area of quantum and x-ray optics. LMU Munich and the MPG each have a 50 % stake in the new joint-venture.

Electrons are really fast – they can migrate from one atom to another within attoseconds (an attosecond is a billionth of a billionth fraction of a second). To observe such rapid movements, a highly refined optical set-up is needed that permits the production of extremely short light pulses. Components for such systems can now be fabricated to customer specifications by UltraFast Innovations GmbH.

The company offers an all-inclusive service, starting from the design of the elements to surface coating of mirrors and the quality inspection of their optical parameters. Mirror coatings can be optimized with respect to features such as high reflectivity, wide spectral bandwidth or a particular filter function. UltraFast Innovations GmbH is backed by the expertise of the participating scientists. The research teams led by Ferenc Krausz, director at the Max-Planck-Institute of Quantum Optics and professor at LMU, and Ulf Kleineberg, who is also a professor at LMU include leading experts in the field of specialized optics. Ferenc Krausz is regarded as one of the inventors of the so-called chirped mirror, a particular type of mirror that enables the creation of ultrashort laser pulses, and he is the holder of several patents on this technology.

Chirped mirrors allow one, for example, to compensate for the phenomenon of material-dependent dispersion, which occurs if the reflective surface delays light of different colors to different degrees – an effect that can increase pulse duration. Indeed, it was the ability of the chirped mirror to diminish this effect that first enabled the generation of ultrashort light pulses. With the aid of such mirrors, researchers were able, in 2008, to produce flashes that lasted for only 80 attoseconds, in this way breaking the 100-attosecond barrier for the first time, and creating the shortest light pulses ever generated in the laboratory. In 80 attoseconds light travels a distance of less than one thousandth of a millimeter.

"Such light pulses give us the opportunity to observe the movements of electrons in atoms and molecules in real time", explains Dr. Jens Rauschenberger, a member of Ferenc Krausz's research group and managing director of the new company. "It is like using a camera. To capture a sharp image of a fast-moving object, you need very short exposure times."

A better understanding of how electrons behave is of practical relevance for communication technologies, for example, and will help to further improve the efficiency of data processing. Short bursts of visible light are already being used for imaging techniques in medicine. Optical coherence tomography, for instance, is an important tool in ophthalmology, allowing one to examine the retina.

One especially notable aspect of UltraFast Innovations GmbH lies in its very close links with current basic research. "Since the development and manufacture of optical elements is an integral part of our scientific work, we can immediately incorporate the latest research results into our designs", says Jens Rauschenberger. "New optics can then immediately be subjected to practical tests." In addition, the establishment of UltraFast Innovations allows more efficient utilization of the high-precision coating facilities at the Service Center for Surface Coatings and Optics, which is part of the "Munich Centre for Advanced Photonics" (MAP). And the new firm also creates other benefits, according to Jens Rauschenberger: "Apart from enabling better utilization of existing technical capacities, we at UltraFast Innovations can also provide important new impulses for research activities, because the profits from the business can be reinvested in the scientific institutes, or used to finance new positions".

Contact:
UltraFast Innovations GmbH
Dr. Jens Rauschenberger
Am Coulombwall 1
85748 Garching
Phone: +49 (0) 89 / 289 - 14097
Mobile: +49 (0) 176 / 2094 92 82
E-Mail: info@ultrafast-innovations.com

Dr. Jens Rauschenberger | EurekAlert!
Further information:
http://www.ultrafast-innovations.com

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>