Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics made to measure

18.09.2009
Joint spin-off of LMU Munich and MPG established

If you are in the business of developing high-speed electronic components, it pays not to lose sight of the electrons. To keep track of them you will need to use dedicated optical elements, such as those now on offer from UltraFast Innovations GmbH.

The new company, which has just been founded by researchers at Ludwig-Maximilians-Universität (LMU) in Munich and the Max Planck Society (MPG), manufactures specialized mirrors and other optical elements for use with pulsed laser light and x-rays. These components allow to generate and manipulate ultrashort light pulses.

Pulses of extremely short duration, in turn, make it possible to observe the movement of the electrons in atoms and molecules in real time. Mirrors suitable for this purpose have only been commercially available to a limited extent until now. They will be of interest to companies that manufacture laser systems for industrial applications, as well as to research groups in the area of quantum and x-ray optics. LMU Munich and the MPG each have a 50 % stake in the new joint-venture.

Electrons are really fast – they can migrate from one atom to another within attoseconds (an attosecond is a billionth of a billionth fraction of a second). To observe such rapid movements, a highly refined optical set-up is needed that permits the production of extremely short light pulses. Components for such systems can now be fabricated to customer specifications by UltraFast Innovations GmbH.

The company offers an all-inclusive service, starting from the design of the elements to surface coating of mirrors and the quality inspection of their optical parameters. Mirror coatings can be optimized with respect to features such as high reflectivity, wide spectral bandwidth or a particular filter function. UltraFast Innovations GmbH is backed by the expertise of the participating scientists. The research teams led by Ferenc Krausz, director at the Max-Planck-Institute of Quantum Optics and professor at LMU, and Ulf Kleineberg, who is also a professor at LMU include leading experts in the field of specialized optics. Ferenc Krausz is regarded as one of the inventors of the so-called chirped mirror, a particular type of mirror that enables the creation of ultrashort laser pulses, and he is the holder of several patents on this technology.

Chirped mirrors allow one, for example, to compensate for the phenomenon of material-dependent dispersion, which occurs if the reflective surface delays light of different colors to different degrees – an effect that can increase pulse duration. Indeed, it was the ability of the chirped mirror to diminish this effect that first enabled the generation of ultrashort light pulses. With the aid of such mirrors, researchers were able, in 2008, to produce flashes that lasted for only 80 attoseconds, in this way breaking the 100-attosecond barrier for the first time, and creating the shortest light pulses ever generated in the laboratory. In 80 attoseconds light travels a distance of less than one thousandth of a millimeter.

"Such light pulses give us the opportunity to observe the movements of electrons in atoms and molecules in real time", explains Dr. Jens Rauschenberger, a member of Ferenc Krausz's research group and managing director of the new company. "It is like using a camera. To capture a sharp image of a fast-moving object, you need very short exposure times."

A better understanding of how electrons behave is of practical relevance for communication technologies, for example, and will help to further improve the efficiency of data processing. Short bursts of visible light are already being used for imaging techniques in medicine. Optical coherence tomography, for instance, is an important tool in ophthalmology, allowing one to examine the retina.

One especially notable aspect of UltraFast Innovations GmbH lies in its very close links with current basic research. "Since the development and manufacture of optical elements is an integral part of our scientific work, we can immediately incorporate the latest research results into our designs", says Jens Rauschenberger. "New optics can then immediately be subjected to practical tests." In addition, the establishment of UltraFast Innovations allows more efficient utilization of the high-precision coating facilities at the Service Center for Surface Coatings and Optics, which is part of the "Munich Centre for Advanced Photonics" (MAP). And the new firm also creates other benefits, according to Jens Rauschenberger: "Apart from enabling better utilization of existing technical capacities, we at UltraFast Innovations can also provide important new impulses for research activities, because the profits from the business can be reinvested in the scientific institutes, or used to finance new positions".

Contact:
UltraFast Innovations GmbH
Dr. Jens Rauschenberger
Am Coulombwall 1
85748 Garching
Phone: +49 (0) 89 / 289 - 14097
Mobile: +49 (0) 176 / 2094 92 82
E-Mail: info@ultrafast-innovations.com

Dr. Jens Rauschenberger | EurekAlert!
Further information:
http://www.ultrafast-innovations.com

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>