Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics made to measure

18.09.2009
Joint spin-off of LMU Munich and MPG established

If you are in the business of developing high-speed electronic components, it pays not to lose sight of the electrons. To keep track of them you will need to use dedicated optical elements, such as those now on offer from UltraFast Innovations GmbH.

The new company, which has just been founded by researchers at Ludwig-Maximilians-Universität (LMU) in Munich and the Max Planck Society (MPG), manufactures specialized mirrors and other optical elements for use with pulsed laser light and x-rays. These components allow to generate and manipulate ultrashort light pulses.

Pulses of extremely short duration, in turn, make it possible to observe the movement of the electrons in atoms and molecules in real time. Mirrors suitable for this purpose have only been commercially available to a limited extent until now. They will be of interest to companies that manufacture laser systems for industrial applications, as well as to research groups in the area of quantum and x-ray optics. LMU Munich and the MPG each have a 50 % stake in the new joint-venture.

Electrons are really fast – they can migrate from one atom to another within attoseconds (an attosecond is a billionth of a billionth fraction of a second). To observe such rapid movements, a highly refined optical set-up is needed that permits the production of extremely short light pulses. Components for such systems can now be fabricated to customer specifications by UltraFast Innovations GmbH.

The company offers an all-inclusive service, starting from the design of the elements to surface coating of mirrors and the quality inspection of their optical parameters. Mirror coatings can be optimized with respect to features such as high reflectivity, wide spectral bandwidth or a particular filter function. UltraFast Innovations GmbH is backed by the expertise of the participating scientists. The research teams led by Ferenc Krausz, director at the Max-Planck-Institute of Quantum Optics and professor at LMU, and Ulf Kleineberg, who is also a professor at LMU include leading experts in the field of specialized optics. Ferenc Krausz is regarded as one of the inventors of the so-called chirped mirror, a particular type of mirror that enables the creation of ultrashort laser pulses, and he is the holder of several patents on this technology.

Chirped mirrors allow one, for example, to compensate for the phenomenon of material-dependent dispersion, which occurs if the reflective surface delays light of different colors to different degrees – an effect that can increase pulse duration. Indeed, it was the ability of the chirped mirror to diminish this effect that first enabled the generation of ultrashort light pulses. With the aid of such mirrors, researchers were able, in 2008, to produce flashes that lasted for only 80 attoseconds, in this way breaking the 100-attosecond barrier for the first time, and creating the shortest light pulses ever generated in the laboratory. In 80 attoseconds light travels a distance of less than one thousandth of a millimeter.

"Such light pulses give us the opportunity to observe the movements of electrons in atoms and molecules in real time", explains Dr. Jens Rauschenberger, a member of Ferenc Krausz's research group and managing director of the new company. "It is like using a camera. To capture a sharp image of a fast-moving object, you need very short exposure times."

A better understanding of how electrons behave is of practical relevance for communication technologies, for example, and will help to further improve the efficiency of data processing. Short bursts of visible light are already being used for imaging techniques in medicine. Optical coherence tomography, for instance, is an important tool in ophthalmology, allowing one to examine the retina.

One especially notable aspect of UltraFast Innovations GmbH lies in its very close links with current basic research. "Since the development and manufacture of optical elements is an integral part of our scientific work, we can immediately incorporate the latest research results into our designs", says Jens Rauschenberger. "New optics can then immediately be subjected to practical tests." In addition, the establishment of UltraFast Innovations allows more efficient utilization of the high-precision coating facilities at the Service Center for Surface Coatings and Optics, which is part of the "Munich Centre for Advanced Photonics" (MAP). And the new firm also creates other benefits, according to Jens Rauschenberger: "Apart from enabling better utilization of existing technical capacities, we at UltraFast Innovations can also provide important new impulses for research activities, because the profits from the business can be reinvested in the scientific institutes, or used to finance new positions".

Contact:
UltraFast Innovations GmbH
Dr. Jens Rauschenberger
Am Coulombwall 1
85748 Garching
Phone: +49 (0) 89 / 289 - 14097
Mobile: +49 (0) 176 / 2094 92 82
E-Mail: info@ultrafast-innovations.com

Dr. Jens Rauschenberger | EurekAlert!
Further information:
http://www.ultrafast-innovations.com

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>