Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL Researchers Study Galaxy Mergers

20.04.2010
Scientists at the Naval Research Laboratory have solved a long-standing dilemma about the mass of infrared bright merging galaxies. Because galaxies are the largest directly observable objects in the universe, learning more about their formation is key to understanding how the universe works.

The University of Hawaii 2.2-meter telescope. Dr. Barry Rothberg and Dr. Jacqueline Fischer, both of the Infrared-Submillimeter Astrophysics & Techniques Section in the Remote Sensing Division, used new data from the 8-meter Gemini-South telescope in Chile along with earlier results from the W. M. Keck-2 10-meter and University of Hawaii 2.2-meter telescopes in Hawaii and archival data from the Hubble Space Telescope, to solve the problem. They have published a paper on their research findings on galaxy evolution in the Astrophysical Journal (March 20, 2010 Volume 712).

Galaxies in the Universe generally come in two shapes, spiral, like our own Milky Way, and elliptical, in which the stars move in random orbits, Rothberg explains. The largest galaxies in the Universe are elliptical in shape and how they formed is central to our understanding how the Universe has evolved over the last 15 billion years. The long-standing theory has been that spiral galaxies merge with each other forming most of the elliptical galaxies in the Universe. Spiral galaxies contain significant amounts of cold hydrogen gas. When they merge, the beautiful spiral patterns are destroyed and the gas is converted into new stars. The more gas present in the spiral galaxies, the more stars are formed and with it, large amounts of dust. The dust is heated by the young stars and radiates energy at infrared wavelengths.

Until recently scientists thought that these infrared bright merging galaxies were not massive enough to be the precursors of most elliptical galaxies in the Universe. The problem lay in the method of measuring their mass. The conventional method of measuring mass in dusty IR-bright galaxies uses near-infrared light to measure the random motions of old-stars. The larger the random motions, the more mass is present. Using near-infrared light makes it possible to penetrate the dust and see as many of the old stars as possible. However, a complication occurs when spiral galaxies merge, because most of their gas is funneled to the gravitational center of the system and forms a rotating disk. This rotating disk of gas is transformed into a rotating disk of young stars that is also very bright at near-infrared wavelengths. The rotating disk of young stars both outshines the old stars and makes it appear as if the old stars have significantly less random motion. In contrast to this conventional method, Rothberg and Fischer instead observed the random motions of old stars at shorter wavelengths effectively using the dust to their advantage to block the light from the young stars. Their new results showed that the old stars in merging galaxies have large random motions, which means they will eventually become very massive elliptical galaxies.

The next step for NRL researches is to directly observe the stellar disks in IR luminous mergers using three-dimensional spectroscopy. Each pixel is a spectrum, and from this the researchers can make two-dimensional maps of stellar motion and stellar age. This will allow them to measure the size, rotation, luminosity, mass and age of the central disk.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil
http://www.nrl.navy.mil/media/news-releases/51-10r/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>