Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern Plays Key Role in DZero International Physics Research Collaboration

06.08.2008
Darien Wood, Ph.D., Associate Professor of Physics at Northeastern University, and other researchers from Northeastern have played integral roles in the recent discovery of the production of pairs of Z bosons, or ZZ dibosons, at the Tevatron particle accelerator.

As the co-leader of the DZero project, Wood led a team of scientists who recently announced the observation of previously unobservable ZZ diboson particles.

The properties of the ZZ diboson make its discovery a necessary precursor to determining whether the Higgs boson does indeed exist. The Higgs boson is the only hypothetical particle in the Standard Model of particle physics that has not yet been observed.

DZero is an international collaboration of 600 scientists from 90 institutions in 18 countries who conduct physics research at Tevatron, currently the world’s highest energy particle accelerator. The experiments explore matter by creating an environment where they can observe interactions of protons and antiprotons, which they hope will lead to a better understanding of the fundamentals of matter and our universe. Tevatron is located in Batavia, IL at the Fermi National Accelerator Laboratory, a United States Department of Energy laboratory.

The scientists set out to examine particle collisions at high energies to see what interactions occur. The scientists developed tools to detect the presence of ZZ dibosons, an extremely rare occurrence, from their decays into electrons, muons, and neutrinos. Despite being difficult to detect, the team was able to observe the ZZ dibosons in three proton-antiproton collisions out of more than 200 trillion.

The final analysis, accomplished by a team of 11 physicists – five of whom are from Northeastern – brought this result to its completion. In addition to Prof. Wood, the Northeastern team included Associate Professor Emanuela Barberis, Ph.D., Postdoctoral research associates Gianluca Cerminara, Ph.D., and Gavin Hesketh, Ph.D., and graduate student Gabriel Facini, all in the physics department. The other schools involved with the final analysis included SUNY – Stony Brook, the University of Manchester, SUNY – Buffalo and the Institute of High Energy Physics, Russia.

“This result is very exciting and it is one of the last stepping stones on the route to possible detection of the elusive Higgs boson,” said Wood.

About Northeastern
Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Jenny Eriksen | Newswise Science News
Further information:
http://www.northeastern.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>