Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST Racetrack Ion Trap is a Contender in Quantum Computing Quest

02.04.2010
Physicists at the National Institute of Standards and Technology (NIST) have built and tested a device for trapping electrically charged atoms (ions) that potentially could process dozens of ions at once with the most versatile control of any trap demonstrated to date.

The novel design is a first attempt to systematically scale up from traps that hold a few ions in a few locations to large trap arrays that can process many ions simultaneously, with the ultimate goal of building a practical quantum computer.

If they can be built, quantum computers would rely on the curious rules of quantum mechanics to solve certain currently intractable problems, such as breaking today’s most widely used data encryption codes. The same NIST research group has previously demonstrated various components and operations of a potential quantum computer using ions as quantum bits (qubits). The trap structure is only one component, analogous to the wiring in today’s computers. Lasers are also needed to control and use the quantum data, as transistors do for classical bits today.

Made of a quartz wafer coated with gold in an oval shape roughly 2 by 4 millimeters, NIST’s “racetrack” ion trap features 150 work zones where qubits—ions encoding 1s and 0s in their “spins”—could be stored and transported using electric fields and manipulated with laser beams for information processing. The trap theoretically could be scaled up to a much larger number of zones and mass fabricated in a variety of materials. Preliminary testing of the trap, including loading of 10 magnesium ions at once and transport of an ion through a junction between channels, is described in a new paper.*

Geometry is a key feature of the new trap design. This is the first demonstration of ion transport through a junction in a trap where all electrodes are located on one flat surface, a more scalable design than the multilayer ion traps originally developed. The various electrodes are used to position and move the ions. At least three adjacent electrodes are needed to hold an ion in a dedicated energy “well.” This well and the ion can then be moved around to different locations by applying voltages to several other electrodes. The modular design would allow the addition of extra rings, which could significantly increase capabilities, according to Jason Amini, who designed the trap while a NIST postdoctoral researcher and is now at the Georgia Tech Quantum Institute in Atlanta.

“The trap design demonstrates the use of a basic component library that can be quickly assembled to form structures optimized for a particular experiment,” Amini says. “We can imagine rapid development of traps tailored to individual experiments.”

NIST scientists are continuing development of the racetrack ion trap as well as other designs. The new work was funded in part by the Intelligence Advanced Research Projects Activity and the Office of Naval Research. Four of the 10 authors of the new paper were postdoctoral or guest researchers at NIST at the time of the research and are currently affiliated with the Georgia Tech Quantum Institute, Atlanta, Ga.; Council for Scientific and Industrial Research, Pretoria, South Africa; Centre for Quantum Technologies, National University of Singapore; and Institut Neel-CNRS, Grenoble, France.

* J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender and D.J. Wineland. Toward scalable ion traps for quantum information processing. New Journal of Physics. March 16, 2010.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>