Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study provides “smoking gun” evidence that Saturn’s collapsing magnetic tail causes auroras

19.05.2014

Saturn’s auroras are caused by the same phenomenon which leads to dramatic auroral displays on Earth, research shows

Researchers have captured stunning images of Saturn’s auroras as the planet’s magnetic field is battered by charged particles from the Sun. The team’s findings provide a “smoking gun” for the theory that Saturn’s auroral displays are often caused by the dramatic collapse of its “magnetic tail”.


Astronomers using the NASA/ESA Hubble Space Telescope have captured new images of the dancing auroral lights at Saturn’s north pole. The ultraviolet images, taken by Hubble’s super-sensitive Advanced Camera for Surveys, capture moments when Saturn’s magnetic field is affected by bursts of particles streaming out from the Sun, providing evidence that the auroral displays are often caused by the dramatic collapse of the planet’s magnetic tail. Credit: NASA/ESA

Just like comets, planets such as Saturn and the Earth have a “tail” – known as the magnetotail – that is made up of electrified gas from the Sun and flows out in the planet’s wake.

When a particularly strong burst of particles from the Sun hits Saturn, it can cause the magnetotail to collapse, with the ensuing disturbance of the planet’s magnetic field resulting in spectacular auroral displays. A very similar process happens here on Earth.

... more about:
»Astronomy »Department »Earth »Hubble »Physics »Saturn »Space »evidence

Scientists observed this process happening on Saturn firsthand between April and May of 2013 as part of a three-year-long Hubble observing campaign. Their findings have been accepted for publication in Geophysical Research Letters, a journal of the America Geophysical Union.

The ultraviolet images, taken by Hubble’s super-sensitive Advanced Camera for Surveys, capture moments when Saturn’s magnetic field is affected by bursts of particles streaming out from the Sun.

Due to the composition of Saturn’s atmosphere, its auroras shine brightly in the ultraviolet range of the electromagnetic spectrum. This observation campaign using Hubble meant the astronomers were able to gather an unprecedented record of the planet’s auroral activity.

The team caught Saturn during a very dynamic light show. Some of the bursts of light seen shooting around Saturn’s polar regions travelled at over three times faster than the speed of the gas giant’s rotation.

“These images are spectacular and dynamic, because the auroras are jumping around so quickly,” Jonathan Nichols, a lecturer and research fellow in the University of Leicester’s Department of Physics and Astronomy in the United Kingdom, who led the Hubble observations, said. “The key difference about this work is that it is the first time the Hubble has been able to see the northern auroras so clearly.”

“The particular pattern of auroras that we saw relates to the collapsing of the magnetotail,” he added. “We have always suspected this was what also happens on Saturn. This evidence really strengthens the argument.”

“Our observations show a burst of auroras that are moving very, very quickly across the polar region of the planet. We can see that the magnetotail is undergoing huge turmoil and reconfiguration, caused by buffering from solar wind,” said Nichols, a Science and Technology Facilities Council (STFC) Advanced Fellow in Planetary Auroras. “It’s the smoking gun that shows us that the tail is collapsing.”

The new images also formed part of a joint observing campaign between Hubble and NASA’s Cassini spacecraft, which is currently in orbit around Saturn itself.

Between them, the two spacecraft managed to capture a 360-degree view of the planet’s aurora at both the north and south poles. Cassini also used optical imaging to delve into the rainbow of colors seen in Saturn’s light shows.

On Earth, observers of auroras see green curtains of light with flaming scarlet tops. Cassini’s imaging cameras reveal similar auroral veils on Saturn, which are red at the bottom and violet at the top.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL060186/abstract

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope”

Authors:
J. D. Nichols: Department of Physics and Astronomy, University of Leicester, Leicester, UK;

S. V. Badman: Department of Physics and Astronomy, University of Leicester, Leicester, UK; and Department of Physics, Lancaster University, Lancaster, UK;

K. H. Baines: Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, USA;

R. H. Brown: Lunar and Planetary Lab, University of Arizona, Tucson, AZ, USA;

E. J. Bunce: Department of Physics and Astronomy, University of Leicester, Leicester, UK;

J. T. Clarke: Center for Space Physics, Boston University, Boston, MA, USA;

S. W. H. Cowley: Department of Physics and Astronomy, University of Leicester, Leicester, UK;

F. J. Crary: Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA;

M. K. Dougherty: Blackett Laboratory, Imperial College London, London, UK;

J.-C. Gérard: Laboratoire de Physique Atmospherique et Planetaire, B5c, Universite de Liege, Liege, Belgium;

A. Grocott: Department of Physics and Astronomy, University of Leicester, Leicester, UK; and Department of Physics, Lancaster University, Lancaster, UK;

D. Grodent: Laboratoire de Physique Atmospherique et Planetaire, B5c, Universite de Liege, Liege, Belgium;

W. S. Kurth: Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA;

H. Melin: Department of Physics and Astronomy, University of Leicester, Leicester, UK;

D. G. Mitchell: Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA;

W. R. Pryor: Central Arizona College, Coolidge, AZ, USA;

T. S. Stallard: Department of Physics and Astronomy, University of Leicester, Leicester, UK.

Contact information for the authors:
Jon Nichols: +44 (0)116 252 5049, jdn@ion.le.ac.uk

AGU Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of Leicester Contacts:
Ellen Rudge, News and Events Officer
+44 (0)116 229 7467
er134@le.ac.uk

Peter Thorley, Corporate News Officer
+44 (0)116 252 2415
pt91@le.ac.uk

European Space Agency Contact:
Georgia Bladon, ESA/Hubble Public Information Officer
+44 781 629 1261
gbladon@partner.eso.org

Science and Technology Facilities Council Contact:
Corinne Mosese, STFC Press officer
+44 (0)1793 979 724, +44 (0)7557 317 200
corinne.mosese@stfc.ac.uk

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/new-study-provides-smoking-gun-evidence-that-saturns-collapsing-magnetic-tail-causes-auroras/

Further reports about: Astronomy Department Earth Hubble Physics Saturn Space evidence

More articles from Physics and Astronomy:

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>