Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New lasers for police and petrochemistry


Laser to replace breathalyser – this principle could be the future of traffic controls: Physicists of the University of Würzburg have developed a laser that can be used to measure alcohol in the driver's cab. But the new laser can do much more.

Is this the future of traffic controls? A special laser is set up at the side of the road to scan passing vehicles. Its light is reflected by a mirror positioned on the other side of the road. The laser detects whether there are alcohol molecules inside the vehicle. The molecules get into the driver's cab for example through the breath of a drunk driver.

Wavers made of semiconducting material are the starting point for manufacturing the lasers.

(Photo: Vera Katzenberger)

This laser measurement is surprisingly accurate: The novel alcohol measurement system sounds an alarm if the car is driven by a person with a blood alcohol content of at least 0.1. However, the device cannot distinguish whether it is the driver or the passenger who is drunk.

"But police can use the system to make a preselection, pick out suspicious cars to check them more thoroughly," says Martin Kamp, a physicist at the Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany.

Based on established technology

Martin Kamp has developed the new laser technology (interband cascade laser) together with Professor Sven Höfling at the Department of Technical Physics. The scientists resorted to the well-known technology of laser-supported stand-off detection which helps detecting hazardous substances, for example at airports or major events.

So far, this type of detection has been used to discover hazards such as explosives: When the laser light is reflected by explosives, the spectral distribution of the reflected beams is significant: "The wavelengths are indicative of the object's composition," Kamp says.

Analysing gases in refineries

Hence, this method is also suitable to identify explosives or drunk drivers. The JMU researchers have teamed up with partners from industry to work on additional applications, for example in petrochemistry.

Their current protect is named iCspec. A new laser is being developed by joint effort of various cooperation partners such as Siemens and Nanoplus GmbH (Gerbrunn). It is planned to use the laser in refineries to determine the exact composition of gases.

"The laser would be capable of analysing the composition of the gases created when distilling crude oil in fractions of a second. Hence, it would be an efficient tool in quality assurance and process control in petrochemical processes," says Kamp, who is in charge of the iCspec project. Besides the industry, the European Union also has an interest in the novel lasers: It funds the project within the scope of its Horizon 2020 programme.

First practical tests in the petrochemical industry

The Würzburg scientists have designed very special semiconductor structures for this novel and complex petrochemical application: Up to 2,000 wafer-thin material layers stacked on top of one another in an ultra-high vacuum chamber establish the basis for the state-of-the-art laser.

The new laser is set to be tested under real conditions soon. A practical test in the refinery of Swedish cooperation partner Preem Petroleum AB will require the laser to detect hydrocarbons such as methane, ethane or propane during distillation. Previous tests have been encouraging. "These lasers could revolutionise measurement technology," Kamp says.


Prof. Dr. Sven Höfling, Chair of Technical Physics, JMU,+49-931-31-83613,

Dr. Martin Kamp, Institute of Physics, JMU,+49 931 31-85121,

Web site of the EU project iCspec:

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>