Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into the World of Quantum Materials

19.09.2014

In Innsbruck, Austria, a team of physicists led by Francesca Ferlaino experimentally observed how the anisotropic properties of particles deform the Fermi surface in a quantum gas. The work published in Science provides the basis for future studies on how the geometry of particle interactions may influence the properties of a quantum system.

How a system behaves is determined by its interaction properties. An important concept in condensed matter physics for describing the energy distribution of electrons in solids is the Fermi surface, named for Italian physicist Enrico Fermi. The existence of the Fermi surface is a direct consequence of the Pauli exclusion principle, which forbids two identical fermions from occupying the same quantum state simultaneously.


The Erbium Team (from left): Kiyotaka Aikawa, Albert Frisch, Simon Baier, Michael Mark, and Francesca Ferlaino (not pictured: Cornelis Ravensbergen)

University of Innsbruck

Energetically, the Fermi surface divides filled energy levels from the empty ones. For electrons and other fermionic particles with isotropic interactions – identical properties in all directions - the Fermi surface is spherical. “This is the normal case in nature and the basis for many physical phenomena,” says Francesca Ferlaino from the Institute for Experimental Physics at the University of Innsbruck.

“When the particle interaction is anisotropic – meaning directionally dependent – the physical behavior of a system is completely altered. Introducing anisotropic interactions can deform the Fermi surface and it is predicted to assume an ellipsoidal shape.” The deformation of the Fermi surface is caused by the interplay between strong magnetic interaction and the Pauli exclusion principle. Francesca Ferlaino and her experimental research group have now been able to show such a deformation for the first time.

Simulation in ultracold quantum gas

For their experiment, the quantum physicists confined a gas of fermionic erbium atoms in a laser trap and cooled it to almost absolute zero. The element erbium is strongly magnetic, which causes extreme dipolar behavior. The interaction between these atoms is, therefore, directionally dependent. When the physicists release the ultracold gas from the trap, they are able to infer the shape of the Fermi surface from the momentum distribution of the particles.

“Erbium atoms behave similarly to magnets, which means that their interaction is strongly dependent on the direction in which the particles interact. Our experiment shows that the shape of the Fermi surface depends on the geometry of the interaction and is not spherical anymore,” explains first author of the study Kiyotaka Aikawa the phenomenon that is extremely difficult to observe

Basic question

“The general question we deal with here is how the geometry of particle interactions influences the quantum properties of matter,” explains Francesca Ferlaino. Answering this question is of interest for physicists from different branches of physics such as the study of high-temperature superconductors. “We need a better understanding of these properties to develop new quantum systems,” underlines Francesca Ferlaino. Ultracold quantum gases once more provide an ideal platform for simulating complex scenarios.

This work was financially supported by the Austrian Ministry of Science, the Austrian Science Fund and the European Union. Since July 2014 ERC and START awardee Francesca Ferlaino is Scientific Director at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences.

Publication: Observation of Fermi surface deformation in a dipolar quantum gas. K. Aikawa,
S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino. Science 2014
DOI: 10.1126/science.1255259 arXiv:1405.2154 http://arxiv.org/abs/1405.2154

Contact:
Univ.-Prof. Dr. Francesca Ferlaino
Institute for Experimental Physics
University of Innsbruck
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
6020 Innsbruck, Austria
Phone: +43 512 507-52440 (Lab.: -52441), (Secr.: -52449), (Fax: -2921)
Email: francesca.ferlaino@uibk.ac.at
Web: http://www.ultracold.at

Christian Flatz
Public Relations office
University of Innsbruck
Phone: +43 512 507 32022
Email: christian.flatz@uibk.ac.at
Web: http://www.uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1126/science.1255259 - Observation of Fermi surface deformation in a dipolar quantum gas. K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino. Science 2014
http://www.ultracold.at - Ultracold Atoms and Quantum Gases

Dr. Christian Flatz | Universität Innsbruck

Further reports about: Electrons Experimental Physics Fermi Innsbruck QUANTUM interactions trap

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>