Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Radiation Belt Storm Probes Ready for Space Environment Tests

07.12.2011
NASA’s Radiation Belt Storm Probes (RBSP), twin spacecraft being built and tested at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., are about to enter a challenging series of tests designed to certify that they are ready for their August 2012 launch and two-year mission in Earth’s orbit.

The coordinated measurements of the two RBSP spacecraft will advance our understanding of space weather and the sun’s influence on the Earth and near-Earth space by probing the planet’s radiation belts, which affect space weather and spacecraft operations.

Beginning the first week of December, RBSP will embark on a space environment test campaign that will last into March 2012. The RBSP team will subject the spacecraft to physical simulations of the stresses of launch and harshness of space operations, but in a controlled test facility where engineers can monitor the spacecrafts’ condition.

“These are complex spacecraft, each with five very sensitive scientific instruments on board,” says Jim Stratton, mission systems engineer for RBSP at the Applied Physics Lab. “The environmental tests are designed to really subject the spacecraft and systems to realistic, challenging conditions and make sure they are ready to fly.”

The first test will simulate the incredibly loud noises generated during launch and the beginning of supersonic travel, when the launch vehicle passes through the sound barrier (approximately 770 miles per hour). These sounds, which can reach a maximum of 134 decibels (nearly as loud as a jet engine from 100 feet away), will be duplicated by a specialized speaker system that is controlled via computer to match the sonic profiles of launch and supersonic barrier breakthrough. The RBSP satellites will be mated together and placed at the center of a circular wall of powerful loudspeakers for this test.

One of the substantial challenges for the probes is that they must survive launch as a single unit; later, above Earth, they will be separated and guided to their individual orbits.

RBSP will next undergo a vibration test. The spacecraft are mated together again and placed on a special table that will shake them to simulate the intense physical effects of launch, and make sure the probes’ systems and electronics are secure and will operate post-launch.

In January 2012, the spacecraft will undergo an electromagnetic compatibility and interference test. This involves turning on all of the spacecrafts’ internal systems without any external power or grounding to verify there are no electronic issues, and that RBSP can successfully perform its science-gathering mission.

RBSP will enter thermal vacuum testing in APL’s test chambers in February. For five weeks, the craft will endure heating and cooling cycles in a vacuum environment; during the lengthy testing, RBSP will also undergo a 10 day-long mission simulation. After that, in May 2012, the completed RBSP spacecraft are scheduled to leave APL and travel south. “The next six months are all about continuing the tremendous efforts of the outstanding team we have assembled for this mission,” says Rick Fitzgerald, program manager for RBSP at APL, “and getting ready to ship the spacecraft to Florida.”

RBSP is scheduled for launch no earlier than Aug. 15, 2012, from the Kennedy Space Center, Fla. APL built the RBSP spacecraft for NASA and manages the mission. The RBSP mission is part of NASA's Living With a Star program, guided by the Heliophysics Division of the NASA Headquarters Science Mission Directorate in Washington.

The program explores fundamental processes that operate throughout the solar system, in particular those that generate hazardous space weather effects near Earth and phenomena that could affect solar system exploration. Living With a Star is managed by NASA's Goddard Space Flight Center in Greenbelt, Md.

Learn more about the Radiation Belt Storm Probes, and see photos and videos of space environment testing, at http://rbsp.jhuapl.edu.

The Applied Physics Laboratory, a not-for-profit division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology.

Geoff Brown | Newswise Science News
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>