Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA measuring the pulsating aurora

08.10.2015

Thanks to a lucky conjunction of two satellites, a ground-based array of all-sky cameras, and some spectacular aurora borealis, researchers have uncovered evidence for an unexpected role that electrons have in creating the dancing auroras. Though humans have been seeing auroras for thousands of years, we have only recently begun to understand what causes them.

In this study, published in the Journal of Geophysical Research, scientists compared ground-based videos of pulsating auroras--a certain type of aurora that appears as patches of brightness regularly flickering on and off--with satellite measurements of the numbers and energies of electrons raining down towards the surface from inside Earth's magnetic bubble, the magnetosphere.


This all-sky movie shows a time lapse of a pulsating aurora on Jan. 3, 2012. Scientists compared the video, taken in Poker Flat, Alaska, over the course of three minutes, with satellite measurements of the numbers and energies of electrons raining down from the magnetosphere to better understand how electrons transfer energy to the upper atmosphere and create the auroras. The black mark traces the satellite foot point -- the place where the satellite is magnetically connected to the aurora -- of the Defense Meteorological Satellite Program satellite.

Credits: NASA

The team found something unexpected: A drop in the number of low-energy electrons, long thought to have little or no effect, corresponds with especially fast changes in the shape and structure of pulsating auroras.

"Without the combination of ground and satellite measurements, we would not have been able to confirm that these events are connected," said Marilia Samara, a space physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and lead author on the study.

Pulsating auroras are so-called because their features shift and brighten in distinct patches, rather than elongated arcs across the sky like active auroras. However, their appearance isn't the only difference. Though all auroras are caused by energetic particles--typically electrons--speeding down into Earth's atmosphere and colliding brilliantly with the atoms and molecules in the air, the source of these electrons is different for pulsating auroras and active auroras.

Active auroras happen when a dense wave of solar material--such as a high-speed stream of solar wind or a large cloud that exploded off the sun called a coronal mass ejection--hits Earth's magnetic field, causing it to rattle.

This rattling releases electrons that have been trapped in the tail of that magnetic field, which stretches out away from the sun. Once released, these electrons go racing down towards the poles, then they interact with particles in Earth's upper atmosphere to create glowing lights that stretch across the sky in long ropes.

On the other hand, the electrons that set off pulsating auroras are sent spinning to the surface by complicated wave motions in the magnetosphere. These wave motions can happen at any time, not just when a wave of solar material rattles the magnetic field.

"The hemispheres are magnetically connected, meaning that any time there is pulsating aurora near the north pole, there is also pulsating aurora near the south pole," said Robert Michell, a space physicist at NASA Goddard and one of the study's authors. "Electrons are constantly pinging back and forth along this magnetic field line during an aurora event."

The electrons that travel between the hemispheres are not the original higher-energy electrons rocketing in from the magnetosphere. Instead, these are what's called low-energy secondary electrons, meaning that they are slower particles that have been kicked up out in all directions only after a collision from the first set of higher-energy electrons. When this happens, some of the secondary electrons shoot back upwards along the magnetic field line, zipping towards the opposite hemisphere.

When studying their pulsating aurora videos, researchers found that the most distinct change in the structure and shape of the aurora happened during times when far fewer of these secondary electrons were shooting in along hemispheric magnetic field lines.

"It turns out that secondary electrons could very well be a big piece of the puzzle to how, why, and when the energy that creates auroras is transferred to the upper atmosphere," said Samara.

However, most current simulations of how the aurora form don't take secondary electrons into account. This is because the energy of the individual particles is so much lower than the electrons coming directly from the magnetosphere, leading many to assume that their contribution to the glowing northern lights is negligible. However, their cumulative effect is likely much larger.

"We need targeted observations to figure out exactly how to incorporate these low-energy secondary electrons into our models," said Samara. "But it seems clear that they may very well end up playing a more important role than previously thought."

Measurements of the number and energies of electrons were made by two satellites that happened to be passing overhead during these pulsating aurora events: Reimei, a JAXA satellite tasked with studying auroras, and a satellite from the U.S. Department of Defense's Defense Meteorological Satellite Program. The ground-based all-sky cameras--used to study both auroras and meteors--are operated at Poker Flat Research Range in Fairbanks, Alaska and the European Incoherent Scatter Scientific Association Radar Facility in Tromsø, Norway.

Susan Hendrix | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>