Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-funded X-ray Instrument Settles Interstellar Debate

30.07.2014

New findings from a NASA-funded instrument have resolved a decades-old puzzle about a fog of low-energy X-rays observed over the entire sky.

Thanks to refurbished detectors first flown on a NASA sounding rocket in the 1970s, astronomers have now confirmed the long-held suspicion that much of this glow stems from a region of million-degree interstellar plasma known as the local hot bubble, or LHB. 


This animation illustrates solar wind charge exchange in action. An atom of interstellar helium (blue) collides with a solar wind ion (red), losing one of its electrons (yellow) to the other particle. As it settles into a lower-energy state, the electron emits a soft X-ray.

Image Credit: NASA's Goddard Space Flight Center

At the same time, the study also establishes upper limits on the amount of low-energy, or soft, X-rays produced within our planetary system by the solar wind, a gusty outflow of charged particles emanating from the sun.

"Interactions between the solar wind and neutral atoms in comets, the outer atmospheres of planets, and even interstellar gas produce soft X-rays," explained team member Steve Snowden, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "We need to account for these processes because the X-rays they produce complicate our observations of the wider universe."

Decades of mapping the sky in X-rays with energies around 250 electron volts -- about 100 times the energy of visible light -- revealed strong emission precisely where it shouldn't be. This glow, known as the soft X-ray diffuse background, is surprisingly bright in the gas-rich central plane of our galaxy, where it should be strongly absorbed. This suggested the background was a local phenomenon, arising from a bubble of hot gas extending out a few hundred light-years from the solar system in all directions.

Improved measurements also made it increasingly clear that the sun resides in a region where interstellar gas is unusually sparse. Taken together, the evidence suggests our solar system is moving through a region that may have been blasted clear by one or more supernova explosions during the past 20 million years.

In the 1990s, a six-month all-sky survey by the German X-ray observatory ROSAT provided improved maps of the diffuse background, but it also revealed that comets were an unexpected source of soft X-rays. As scientists began to understand this process, called solar wind charge exchange, they realized it could occur anywhere neutral atoms interacted with solar wind ions.

Within the last decade, some scientists have been challenging the LHB interpretation, suggesting that much of the soft X-ray diffuse background is a result of charge exchange," said F. Scott Porter, a Goddard astrophysicist also participating in the study. "The only way to check is to design an instrument and make measurements." 

Led by Massimiliano Galeazzi, a professor of physics at the University of Miami in Coral Gables, Florida, an international collaboration developed a mission to do just that. The team includes scientists from NASA, the University of Wisconsin -- Madison, the University of Michigan at Ann Arbor, the University of Kansas at Lawrence, Johns Hopkins University in Baltimore, Maryland, the French National Center for Scientific Research (CNRS), headquartered in Paris, and other institutions.

Galeazzi and his colleagues rebuilt, tested, calibrated, and adapted X-ray detectors originally designed by the University of Wisconsin and flown on sounding rockets in the 1970s. Components from another instrument flown on space shuttle Endeavour in 1993 also were given new life. The mission was named DXL, for Diffuse X-ray emission from the Local Galaxy. 

On Dec. 12, 2012, DXL launched from White Sands Missile Range in New Mexico atop a NASA Black Brant IX sounding rocket, reaching a peak altitude of 160 miles (258 km) and spending five minutes above Earth's atmosphere. The mission design allowed the instrument to observe a worst-case scenario involving charge exchange with interstellar gas.

The solar system is currently passing through a small cloud of cold interstellar gas as it moves through the galaxy. The cloud’s neutral hydrogen and helium atoms stream through the planetary system at about 56,000 mph (90,000 km/h). While hydrogen atoms quickly ionize and respond to numerous forces, the helium atoms travel paths largely governed by the sun's gravity. This creates a "helium focusing cone" downstream from the sun that crosses Earth's orbit and is located high in the sky near midnight in early December.

"This helium focusing creates a region with a much greater density of neutral atoms and a correspondingly enhanced charge exchange rate," Snowden said.

The solar wind is accelerated in the sun's corona, the hottest part of its atmosphere, so its atoms have been ionized -- stripped of many of their electrons. When a neutral atom collides with a solar wind ion, one of its electrons often jumps to the charged particle. Once captured by the ion, the electron briefly remains in an excited state, then emits a soft X-ray and settles down at a lower energy. This is solar wind charge exchange in action.

To establish a baseline for the soft X-ray background, the researchers used data captured by the ROSAT mission in September 1990 in a direction looking along, rather than into, the helium focusing cone. The results, published online in the journal Nature on July 27, indicate that only about 40 percent of the soft X-ray background originates within the solar system.

"We now know that the emission comes from both sources but is dominated by the local hot bubble,” said Galeazzi. "This is a significant discovery. Specifically, the existence or nonexistence of the local bubble affects our understanding of the area of the galaxy close to the sun, and can, therefore, be used as a foundation for future models of the galaxy structure."

Galeazzi and his collaborators are already planning the next flight of DXL, which will include additional instruments to better characterize the emission. The launch is currently planned for December 2015.

"The DXL team is an extraordinary example of cross-disciplinary science, bringing together astrophysicists, planetary scientists, and heliophysicists," added Porter. "It’s unusual but very rewarding when scientists with such diverse interests come together to produce such groundbreaking results."

Related Links:

Download HD video and additional images from NASA Goddard's Scientific Visualization Studio

Paper: "The Origin of the Local 1/4-keV X-ray Flux in Both Charge Exchange and a Hot Bubble"

Paper: "Pressure Equilibrium between the Local Interstellar Clouds and the Local Hot Bubble"

DXL Launches Successfully (12.13.2012)

Imagine the Universe! The Soft X-ray Diffuse Background 

Francis Reddy

NASA's Goddard Space Flight Center, Greenbelt, Maryland

Francis Reddy | Eurek Alert!

Further reports about: NASA ROSAT X-ray atmosphere energy interstellar measurements planetary system supernova explosions

More articles from Physics and Astronomy:

nachricht Distant planet's interior chemistry may differ from our own
01.09.2015 | Carnegie Institution

nachricht Interstellar seeds could create oases of life
28.08.2015 | Harvard-Smithsonian Center for Astrophysics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>